
. . ,  

. .  
' .  

. I  - 

. .  . , . .  



NASA 
Technical 
Paper 
2026 

AVRADCOM 
Technical 
Report 
81 =A=l4 

1982 

National Aeronautics 
and Space Administration 

Scientific  and  Technical 
Information  Branch 

TECH LIBRARY UAFB, NM 

Establishment of a 
Rotor Model Basis 

R. E. McFarland 
Aeromechanics  Laboratory 
AVRADCOM  Research  and  Technology  Laboratories 
NASA  Ames  Research  Center  
Moffett  Field,  California 



. 

TABLE  OF  CONTENTS 

Page 

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vi 

I SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

I1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

I11 DATA  ACQUISITION . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Angle-of-Attack  Error . . . . . . . . . . . . . . . . . . . . . . .  5 
DataDensity . . . . . . . . . . . . . . . . . . .  :. . . . . . .  7 
Balanced  and  Constrained  Dynamics . . . . . . . . . . . . . . . . .  7 

IV TIPLOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

V  SIMPLIFIED  SPACING  AND  SUMMATION . . . . . . . . . . . . . . . . . . . .  15 
Uniform-Segment  Algorithm . . . . . . . . . . . . . . . . . . . . .  17 
Equal-Annuli  Algorithm . . . . . . . . . . . . . . . . . . . . . .  18 
Equal-Annuli  Midpoints . . . . . . . . . . . . . . . . . . . . . .  19 

VI SUMMATION  PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
Integration  of  Linear  Segments . . . . . . . . . . . . . . . . . .  22 
Algorithm  for  the  Basis . . . . . . . . . . . . . . . . . . . . . .  24 
Integration of Quadratics . . . . . . . . . . . . . . . . . . . . .  25 

VI1  EQUAL-ANNULI  DERIVATION . . . . . . . . . . . . . . . . . . . . . . . .  27 
Equal-Annuli  and  Quadratures . . . . . . . . . . . . . . . . . . .  28 
Equal-Annuli  Midpoints . . . . . . . . . . . . . . . . . . . . . .  3 1  

VI11 ERROR  COMPARISON . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 
Error  Propagation . . . . . . . . . . . . . . . . . . . . . . . . .  33 

IX CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

APPENDIX A . QUADRATIC  COMPARISON . . . . . . . . . . . . . . . . . . . . . .  36 

APPENDIX B . NUMERICAL  EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . .  38 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

iii 



LIST OF FIGURES 

Figure 

1 Thrust  differences.  v = 10 knots . . . . . . . . . . . . . . . . . . . .  
2 Thrust  differences.  v = 250 knots . . . . . . . . . . . . . . . . . . .  
3 Standard  blade  orientation . . . . . . . . . . . . . . . . . . . . . . .  
4 Control  profile . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 Lift-force  profiles . . . . . . . . . . . . . . . . . . . . . . . . . .  
6 Drag-force  profiles . . . . . . . . . . . . . . . . . . . . . . . . . .  
7 Aerodynamic  coefficient  logic . . . . . . . . . . . . . . . . . . . . .  
8 Simplified  stall  onse. t radii.  azimuth = 270. . . . . . . . . . . . . . .  
9 Total  blade  aerodynamic  forces  and  moments  excluding  tip  loss . . . . .  
10 Total  blade  aerodynamic  forces  and  moments  including  tip  loss . . . . .  
11 Basis.  total  rotor  outputs.  body  axis  system . . . . . . . . . . . . .  
1 2  Total  rotor  outputs  of  extant  model.  constrained  condition . . . . . .  
13 Aerodynamic  errors  of  extant  model.  constrained 

condition.  five  segments . . . . . . . . . . . . . . . . . . . . . .  
14 Total  rotor  outputs of extant  model.  balanced  condition . . . . . . . .  
15 Torque  comparison  of  extant  model  with  five  segments . . . . . . . . . .  
16 Aerodynamic  errors of alternate  model.  constrained 

condition.  five  segments . . . . . . . . . . . . . . . . . . . . . .  
17 Total  rotor  outputs  of  alternate  model.  constrained  condition . . . . .  
18 Total  rotor  outputs  of  alternate  model.  balanced  condition . . . . . .  
19 Torque  comparison of alternate  model  with 

fiveevaluations . . . . . . . . . . . . . . . . . . . . . . . . . .  
20 Lagging  coefficient  variation . . . . . . . . . . . . . . . . . . . . .  
21 Computed  torque  error . . . . . . . . . . . . . . . . . . . . . . . . .  
22 Algorithmic  relative  errors  for  polynomial-force  profile . . . . . . . .  

45 

46 

47 

48 

49 

57 

65 

66 

67 

69 

71 

72 

73 

75 

76 

77 

79  

80 

81  

82 

83 

84  

iv 



LIST OF TABLES 

Table Page 

1 Computed rpm with  Vehicle Velocity . . . . . . . . . . . . . . . . . .  41 

2 Uniform-Segment Evaluation Radii . . . . . . . . . . . . . . . . . . .  41 

3 Uniform-Segment Algorithm Relative Errors . . . . . . . . . . . . . . .  41 

4 Equal-Annuli Evaluation Radii . . . . . . . . . . . . . . . . . . . . .  42 

5 Equal-Annuli Algorithm Relative Errors . . . . . . . . . . . . . . . .  42 

6 Equal-Annuli Midpoint Evaluation Radii . . . . . . . . . . . . . . . .  42 

7 Equal-Annuli Midpoint Algorithm Relative Errors . . . . . . . . . . . .  43 

V 



SYMBOLS 

Pertinent  symbols  are  reproduced  here  from  Houck  et  al.,  1977.  The  equations 
and  data in this  reference  were  derived in the U.S. Customary  Units  to  expedite 
development  of  the  flight  vehicles  by  Sikorsky  Aircraft  Company. 
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ESTABLISHMENT OF A ROTOR MODEL BASIS 

R. E. McFarland 

Ames Research  Center 
Aeromechanics  Laboratory 

and 
AVRADCOM Research  and  Technology  Laboratories 

I. SUMMARY 

Rotating  blade-element  mathematical   models  for  use i n  d i s c r e t e ,  man-in-the-loop 
ro to rc ra f t   s imu la t ion   have   cons ide rab le   eng inee r ing   va lue ,   bu t   t hey  are computation- 
a l ly   expens ive .  A comprehensfve  blade-element  model  of  the RSRA ro tor   sys tem is 
examined h e r e   t o   p r o v i d e   a c c u r a t e   b a s e l i n e   d a t a   f o r   t h e   a n a l y s i s  of m o d i f i c a t i o n s   t o  
t h e   p r e s e n t  model. It is important  that   models  be  developed  for real-time s imula t ion  
which retain the   impor t an t   f ea tu re s  of t h e   o r i g i n a l ,  while s i g n i f i c a n t l y   r e d u c i n g   t h e  
computational  expense. 

L i f t  and  drag  data  are p resen ted   fo r  each of f i v e   b l a d e s  a t  a i r c r a f t   s p e e d s  
up t o  300 knots .   Total   main  rotor   forces  and moments are a l so   p rov ided   ove r   t h i s  
speed  range.  This body  of d a t a  is the   bas i s   fo r   compar i son   w i th   da t a   f rom  a l t e rna te  
rotor  models.  

Obtaining  these  data   required  developments  i n  both  rotorcraf t   model ing  and 
c o m p u t e r   s c i e n c e s .   I n   t h e   f i r s t   d i s c i p l i n e  i t  w a s  de te rmined   tha t   the  model f o r   t h e  
b l ade  element ang le  of a t tack   should   be   modi f ied .  T h i s  modi f ica t ion  w a s  used i n   t h e  
genera t ion  of t h e   b a s i s   d a t a .  Also, t h e   t i p - l o s s  model w a s  found to   r equ i r e   mod i f i -  
c a t i o n  when a l a r g e  number of  segmental  elements is  used, as in t h e  case of a b a s i s  
genera t ion .  An exp lo ra t ion  of t h i s  phenomenon l e a d s   t o   a n   i n v e r t e d   t i p - l o s s  
d e f i n i t i o n .  

The computer-science  impact i s  e v a l u a t e d   i n   t h e   d i s c u s s i o n  of e lemental   spacing 
c r i t e r i a ;   t h i s   e v a l u a t i o n   i n f l u e n c e s   t h e  method of i n t eg ra t ing   t he   e l emen ta i   fo rces  
and moments a long   t he   r ad ius  of a ro to r   b l ade .  It is shown t h a t   l o c a t i o n s   w i t h i n  
segments a t  which t h e   l i f t  and  drag  evaluat ions are made are c r i t i c a l   t o   a c c u r a c y  
when the   quadra ture   t echnique  Fs  used, and t h a t   i n c o n s i s t e n t   f o r c e s  and moments may 
r e su l t .   Th i s   a spec t  is exami'ned, and  independent  of  the  spacing  algorithm,  consistent 
summation c o e f f i c i e n t s  are developed usirng the assumption of l i n e a r   f o r c e   p r o f i l e s  
between  observatfon  poirnts.  Another computer-scfence-related idea  which i s  developed 
involves   the   t echnique  of performing  the  force  and moment eva lua t ions  a t  f i x e d  
az imutha l   pos i t fons   fo r  ease in   da ta   compar ison .  Coupled w i t h   t h i s   i d e a  is t h e  
observa t ion  that t h e  aerodynamic  and  kinematic  portions of t h e  dynamics  of a b lade  
may then  be  independent ly   analyzed.  The idea  of  "constrained"  dynamics  allows 
aerodynamic  parametric  changes  to  be  evaluated by e s sen t i a l ly   ho ld ing   t he   k inemat i c  
p o r t i o n s   t o  a prescr ibed   condi t ion .  The r e s u l t  is a cons ide rab le   r educ t ion   i n  
computa t ion   requi red   for   da ta   co l lec t ion ,   and  a clear establ ishment  of cause  and 
e f f e c t   f o r   a n a l y s i s .  

A v e r y   a c c u r a t e   b a s i s   f o r  model  comparison,  which is appropr i a t e   fo r   exp lo ra -  
t i o n s   i n t o  real-time model e f f i c i e n c i e s ,   h a s  emerged  from this s tudy.  Bhny of t h e  
c o r r e c t i o n s  and  improvements  developed are recommended f o r  immediate a p p l i c a b i l i t y  
t o  a s imula t ion   model   a l ready   be ing   used .   Al though  the   spac ing   charac te r i s t ics   o f  



the  equal  annuli  algorithm  are  preserved,  alternate  techniques  are  recommended  for 
the  use  of  summation  coefficients,  and  the  computation  of  the  tip-loss  phenomenon. 

11. INTRODUCTION 

The RSRA simulation  mathematical  model  was  developed  by  Sikorsky  Aircraft  for 
performance  and  handling  qualities  evaluations; it is.also intended  "for  pilot  train- 
ing,  preflight  of  test  programs,  and  the  evaluation  of  promising  concepts  before 
their  implementation  on  the  flight  vehicle"  (Houck  et  al., 1977). The  author is 
indebted  to  Houck  et  al.,  for  the  extensive  use  of  their  data in this  study. It is 
assumed  that  the  reader  has  some  familiarity  with  blade-element  mathematical  model- 
ing,  and  in  particular  with  the  main  rotor  model  described  by  Houck  et  al.,  which is 
herein  referred  to  as  the  "extant  model." As supplied  to  the  Langley  and  Ames 
Research  Centers,  the  model  represents  a  computational  requirement  that  can  only be 
synchronized  with  real  time  by  the  use  of  rather  sophisticated  computers.  Because 
of  the  applicability  of  the  blade-element  model,  NASA  has  an  interest  in  its  wider 
utility  (Mackie  and  Alderete,  1977),  for  instance,  on  such  modest  computers  as  the 
Xerox  Sigma 8. The  equations  and  data  contained  in  the  real-time  model  represent  a 
proprietary  derivation  from  Sikorsky  Aircraft's  General  Helicopter  (GENHEL)  simula- 
tion  model.  Only  the  radial  dimension  is  investigated  here. 

The  objective  of  this  study  is  to  establish  a  rotor-system  data  base  of  high 
fidelity,  using  relatively  arbitrary  inputs  that  may  be  used  in  establishing  the 
accuracy  of  alternate  mathematical  models. It is  assumed  that  these  alternate  math- 
ematical  models  will  use  the  same.  physical  principles  as  the  extant  rotating,  blade- 
element  model,  but  they  will  contain  various  modifications in order  to  accrue  real- 
time  computational  benefits.  Because  of  the  magnitude  of  the  computational  problem 
for  blade-element  rotor  models,  their  accuracy  is  highly  correlated  with  their  execu- 
tion  speed. It is  maintained  that  an  approximate  model  may  be  developed  that  will 
compare  favorably  with  the  complete  model  by  capitalizing  upon  speed  advantages.  If 
these  advantages  approach  the  factor  of two, the  model  will  then  be  capable  of  real- 
time  synchronization  using  a  modest  digital  computer  such  as  the  Xerox  Sigma 8. 
Hence,  real-time  constraints  are  the  motivation  for  this  study,  although  only  accu- 
racy  is  addressed  here. 

In  order  to  establish  a  basis,  or  data  base  of  high  fidelity  for  comparison  pur- 
poses, it must  be  assumed  that  the  selected  discretized  model  collapses  to  the  proper 
continuum  when  the  number  of  discrete  elements  is  large  (but  considering  computer 
word  length,  not  too large). Unfortunately,  the  extant  RSRA  simulation  model  (Houck 
et  al.,  1977)  converges  very  slowly  with  segment  count,  and  this  behavior  prompted 
an  investigation  of  the  radial  spacing  convergence  properties.  Both  a  low-  and  high- 
speed  flight  condition  were  selected,  and  are  presented in figures 1 and 2. Curves 
tagged  "extant"  reveal  the  convergence  difficulties.  The  rotor-system  thrust  differ- 
ences  as  functions  of  the  total  number  of  evaluation  points  are  slowly  convergent  for 
a  large  number  of  points,  and  radically  divergent  for  a  small  number  of  points. 
Hence, in this  document we shall  go  somewhat  beyond  the  mere  creation  of  a  data  base 
and  develop  certain  corrections  and  improvements  that  are  applicable  to  the  extant 
real-time  simulation  model. 

A basis  is  created  which  meets  the  test  of  invariancy  with  perturbations in the 
number  of  radial  evaluations.  This  corrected  and  improved  model  is  not  for  real-time 
use,  but  for  establishing  a  standard,  for  co.mparison  purposes,  with 20 radial  evalua- 
tion  points.  This  "basis"  produces  the  rotor-system  thrust  differences  tagged  ''basis" 
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i n   f i g u r e s  1 and 2. The u s e  of 20 e v a l u a t i o n   p o i n t s   c l e a r l y   e l i m i n a t e s   d i s c r e t i z a -  
t i o n  phenomena and  a lgori thmic  dis tor t ion  f rom  this   model .  

I n   c o n t r a s t   t o   t h e   e x t a n t  real-time model (Houck e t  a l . ,  1 9 7 7 ) ,   a n   a l t e r n a t e  
model i s  developed  which  has  better  convergence  features.   This model is  a l so   appro-  
p r i a t e   f o r  real-time s imula t ion ,   and   de l ive r s   t he   t h rus t   d i f f e rences   t agged  "alter- 
n a t e "   i n   f i g u r e s  1 and 2 .  S ince  real-time c o n s t r a i n t s   u s u a l l y   d i c t a t e  a small 
number  of e v a l u a t i o n   p o i n t s ,   t h i s   a l t e r n a t e  model is recommended fo r   s imu la t ion  work. 

I n   t h e   p r o c e s s  of c r e a t i n g  a d a t a - a c q u i s i t i o n   a l g o r i t h m   f o r   t h i s   a n a l y s i s ,  a 
technique w a s  d i s c o v e r e d   f o r   l i t e r a l l y   t a k i n g  a snapshot of dynamic v a r i a b l e s ;   t h i s  
technique is u s e f u l   i n   i s o l a t i n g   t h e  small d i f fe rences   normal ly   assoc ia ted   wi th   var i -  
ous   d i scre te   a lgor i thms.   This   fea ture   has   cons iderably   reduced   the   computa t iona l  
expense  of t h i s  and  other   s tudies;   and it is a l so   u se fu l   fo r   t he   p rob lem of ro to r -  
c r a f t  trimming. 

A technique is developed   for   handl ing   the   t ip - loss  phenomenon by in t roducing  
the  concept  of a pseudo t ip   fo r   l i f t i ng   pu rposes .   Th i s   t echn ique   r educes  computa- 
t i o n a l   e r r o r s  and s i m p l i f i e s   t h e   g e n e r a l i z a t i o n  of t h e   i n t e g r a t i o n   p r o c e s s   t o  a sum- 
mation  process.  

With r e s p e c t   t o  a f o r c e   p r o f i l e   a l o n g  a blade,   the   combinat ion of  summation  and 
spacing  a lgori thms are inves t iga t ed  and  found t o   b e  less than optimum.  Improvement 
t o   t h e  summation algorithm  motivates  the  development of a s l i g h t l y   d i f f e r e n t   s p a c i n g  
a lgo r i thm,   u sed   p r imar i ly   fo r   i l l u s t r a t ive   pu rposes ;  i t  i s  i d e n t i f i e d  as  equal- 
annuli   midpoint  spacing  and i s  shown t o   b e t t e r  accommodate the   quadra ture   t echnique .  
Without  influencing  computational  expense,  summation c o e f f i c i e n t s  are developed  for  

. improvements in   accuracy ,  and f o r   c o n s i s t e n c y  between f o r c e s  and  moments, r e g a r d l e s s  
of t he   spac ing   a lgo r i thm.   These   coe f f i c i en t s   f ea tu re  a l inear   assumpt ion   for  elemen- 
t a l  f o r c e s  between e v a l u a t i o n   r a d i i  and ex t r apo la t ion  a t  endpoints.  

A f ive-point  model t h a t   u s e s   t h e   c o r r e c t i o n s  and  improvements  developed  here 
becomes so a c c u r a t e   t h a t  i t  is d i f f i c u l t   t o   j u s t i f y   t h e   u s e  of  more  segments i n  
real-time s imula t ion  work. 

111. DATA ACQUISITION 

An extensive  mathematical  model  of t h e  RSRA (Houck et a l . ,  1977)  has  been  pro- 
grammed a t  NASA/Ames Research  Center  in  both a s i n g l e  and a dua l  computer  configura- 
t r o n  (Mackie  and  Alderete,   1977).   Although  satisfactory real-time synchronizat ion 
with  this   sof tware  has   not   been  achieved  using  modest   d igi ta l   computers ,   the   s ingle  
computer  formulation is n o n e t h e l e s s   r e a d i l y   a v a i l a b l e   f o r   a n a l y s e s   u s i n g   d a t a  gen- 
e r a t e d   i n  a batch  (nonreal-t ime) mode. When an   appropr i a t e   d r iv ing   rou t ine  is used, 
t h e   s u b r o u t i n e   i d e n t i f i e d  as'  ROTOR may be   exerc ised  as a s e p a r a t e   e n t i t y   f o r   i n v e s t i -  
ga t ions   in to   ro tor   model ing   techniques .  

I n   o r d e r   t o  create a bas is   wi th   which   to   compare   a l te rna te  model s t r u c t u r e s ,  
ex t ens ive   da t a  w e r e  obtained  from ROTOR. Using 20 segments  per  blade, and wi th  modi- 
f i c a t i o n s   t h a t  w i l l  be  developed  herein,  ROTOR w a s  run  with  an  azimuth  advance  angle 
of go; t h e  (.pseudo) c y c l e  t i m e  w a s  varied  from 7.094 to   9 .851  msec i n   o r d e r   t o  accom- 
modate the  scheduled rpm c o n s t r a i n t s  (Mach 1 avoidance) as shown i n   t a b l e  1. 
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Data acquisiti'on  occurred at multiples  of  eight  times  the go azimuth  advance 
increment,  that  is,  every 72 , 51 order  to  avoid  data  interpolation. 0 

For  an  arbitrary  input  control  configuration  within  the  capacity  of  a  rotor 
system,  after  blade  transients  vanish  after  a  few  revolutions,  the  tracking  blade 
phenomenon  is  observed in this  model  such  that  at  any  selected  azimuth  station  the 
dynamics  of  a  given  blade  are  replicated  by  the  other  blades  as  they  arrive  at  that 
station. In this  condition  of  equilibrium,  blade-element  rotational  kinematics  at 
these  orientations  may  be  described  with  Fourier  coefficients.  For  the  RSRA  model 
at  all  flight  regimes  this  phenomenon  has  been  observed  to  occur  in  something  less 
than  ten  complete  rotor  revolutions, or 400 cycles  through  the  9O-increment  logic. 
The  orientation  given in figure  3  has  been  selected  as  a  standard  for  observation 
purposes,  where  the  "master  blade"  is  pointing  aft. 

The  problem  of  obtaining  a  control  profile  that  is  within  the  capacity  of  the 
rotor  system  was  treated  with  some  seriousness,  although it is  not  necessarily  ger- 
main  to  this  study.  All  that is actually  required in this  analysis  is  that  all  the 
degrees  of  freedom  be  exercised,  and  this  requirement  turns  out  to  be  a  foregone 
conclusion  with an arbitrary  control  profile.  Nonetheless,  a  voluminous,  unpublished 
document  was  consulted  for  data  over  the  entire  flight  envelope,  and  a  control  pro- 
file  was  selected  that  produced  a  reasonably  smooth  transition  from  point  to  point in 
velocity  space  (10-knot  increments).  This  profile,  shown in figure 4 ,  is  sufficient 
to  acquire  a  large  data  base  from  the  ROTOR  routine,  as  modified.  Since  the  rotor  as 
3 system  has  been  isolated in this  study,  it  is  not  necessary  to  consider  the  viabil- 
ity  of  the  selected  control  profile  with  respect  to  body-loop  closure.  These  controls 
Zertainly  do  not  constitute  trim  positions,  and  the  probability  or  even  possibility 
that  they  will  actually  occur  "in  flight"  is  questionable. 

It is  shown  herein  how  tip-loss  effects  may  be  independently  considered  by  util- 
ization  of  the  concept  of  a  pseudotip  for  lifting  purposes,  and  how  this  concept 
eliminates  discontinuous  end  effects  from  the  force  profiles  as  a  function  of  radius. 
The  integration  (summation)  of  these  smoother  "force  profiles," 

fp = dFp/dr 

fT = dFT/dr 

fR = dFR/dr 

is  shown  still  to  present an array  of  discretization  problems,  which  are  compounded 
when  the  aerodynamic  moments'  are  also  considered. 

With  two  fixed  locations  along  the  blade,  one  being  the  cuff  (beginning  of  the 
effective  blade)  and  the  other  being  the  pseudotip  (which  is  shown  to  be  the  effec- 
tive  tip  for  lifting  purposes),  the  blade-force  profiles  are  presented  by  using 
20 evaluations  per  blade,  and  these  data  are  given  every 10 knots  from 0 to  300  knots; 
lift  profiles  are  presented in figure 5, and  drag  profiles  are  presented in figure 6.. 
The  quantity  fR  is  a  minor  term  and  is  not  displayed  here. 

A11 the  data in  this.document  have  been  created  after  the  implementation  of  the 
angle-of-attack  correction  given  in  the  next  section. 

lRobert A. Monteleone,  Systems  Requirements  Handbook  for  the  Rotor  Systems 
Research  Aircraft,  Sikorsky  Report  SER-72039,  March 1977. Also  available  from  NASA 
management,  Contract  NAS1-13000. 
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Angle-of-Attack  Error 

In the  reference  formulation  (Houck  et  al.,  1977)  ay  is  a  four-quadrant  angle 
(180" < a 5 180.") that  may  be  given in terms  of  the  dimensional  velocity  variables 
(vp Y VTY VR)  by 

When  the  denominator  of  this  expression  is  positive, lay I I 90" and  the  positive 
table  lookup  argument (CYTRANS for  lift)  is  obtained  by  determining  whether  or  not 
the  inplane  angle  of  attack  given  by lay cos y I is  within  a  small  band  about  the 
positive  abscissa: 

When  the  denominator  of  equation  (2) is negative,  lay] > 90" and  reverse  flow 
occurs.  The  value  of ~ T W S  for  lift  is  then  determined  by  examining  a  similar 
small  band  about  the  negative  abscissa: 

Section  A-20(c)  of  the  paper  by  Houck  et  al.,  1977  (the  first  line  of  eq. (9) below) 
is  therefore  assumed  to  be  in  error,  and  should  appear  as 

which  is  the  same  as  the  first  line  of  equation ( 4 ) .  Since  the  angle  of  attack  is 
also  used  to  compute  the  switch  point  between  univariant  and  multivariant  lift  and 
drag  functions,  this  section  of  the  function-generation  logic  is  clarified in 
figure 7. 

This  angle-of-attack  error in reverse  flow  probably  has  little  effect on previ- 
ous  simulation  results,  although it has  caused  considerable  delay  in  this  analysis. 
Its  influence  is  examined  below. 

If  the  equal-annuli  spacing  algorithm  of  the  extant  model is used,  the  initial 
evaluation  (inboard)  radius  is  given  by  (see  section V I I )  

rl = 2N 



which  for  five  segments  is  equal  to  11.56  ft.  The  interior 
aerodynamic  blade,  which  is  therefore  treated  as  lacking in 
ity,  is  given  by  the  proportion 

'1 - 'A 
P =  

BMRrMR - 'A 

or  21.6%.for  a  five-segment  simulation.  For  the  simplified 
velocity , 

VT = Qr + 1.69(vknots)sin 9 

portion  of  the  effective 
any  important  functional- 

(7) 

relationship  of  tangential 

(8) 

at  the  worst-case  azimuth of 2 7 0 ° ,  and  setting  the  tangential  velocity  equal  to  zero 
permits  the  calculation  of  the  radius  at  which  stall  occurs;  this  calculation is pre- 
sented  in  figure 8. If  the  computed  values  of  rpm  of  table 1 are  used,  it  is  seen 
that  the  stall  phenomenon  begins  to  occur  on  the  effective  aerodynamic  surface  at 
about 85  knots  of  vehicle  velocity. It is also seen that  until  about  155  knots  this 
phenomenon  is  ignored in the  extant  model  since  it  occurs  interior  to  the  initial 
evaluation  radius  (five  segments).  Hence,  even  without  the  angle-of-attack  correc- 
tion  given  here,  the  extant  simulation  model  performs  as  it.  was  intended  in  velocity 
regions  less  than  155  knots.  Beyond  this  velocity,  or i f  more than f i ve  segments are 
used at Zmer vezoci t ies ,  the  errors  are  dramatic. 

As  an  example of the  effect of this  error,  let  us  consider  the  extant  (erroneous) 
formulation,  which  is  independent  of  the  sign  of ay whenever  the  absolute  value  of 
ay is  greater  than 90': 

= /COS yl.ayI + 180'(1 - /cos y l ) l  

If ay = 179",  which  is  well  within  the 8" band  about  the  negative  abscissa, 
then "TRANS should  be  even  closer  to 180". Also,  for  cos y = 0.9,  where  its  sign 
is  immaterial,  one  would  anticipate  a  value  for "TRANS somewhere  within 1" of the 
negative  abscissa (180'), but  what  actually  occurs  from  equation (9) is: 

"TRANS = 1 - 1  (179")(0.9)1 + 180°(1 - / 0 . 9 / ) 1  = 143.1' 

The  correct  value  from  equation (5) is 179.1'  (closer  to  coincidence  with  the 
airstream),  which  produces  a  relatively  small  lift  coefficient  (about -0.09). The 
value  143.1'  produces  a  huge  lift  coefficient  .(about -1.1) and  has  been  observed  to 
cause  spectacular  N-per-revolution  force  and  moment  variations. 
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Data  Density 

, 

The  blade  orientation  of  figure 3 and  the  control  profile  of  figure 4 were  used 
in order  to  obtain  a  reasonable  output  history;  figures 5 and 6 show  the  diverse 
albeit  piecewise  continuous-curve  shapes  of  the  individual-blade  lift-  and  drag-force 
profiles.  Twenty  observations  of  each  lift-  and  drag-profile  curve,  as  shown in 
these  figures,  appear'  to  be  more  than  heuristically  sufficient  for  continuum  emula- 
tion,  and  this  fact is reinforced  by  invariancy  under  summation,  as  is  shown  by  the 
curves  tagged  "basis" in figures 1 and 2. (The  actual  summation  algorithm,  which 
produces  invariant  answers  for  a  reasonable  number  of  segments N, will be  seen  to  be 
different  if  a  minimal  value  of N is  required.)  However,  with  the  luxury  of 
20 observations,  the  summation  algorithm  becomes  relatively  inconsequential. 

The  data  displayed in figures 5 and 6 contain  the  angle-of-attack  correction 
discussed  previously. The observation  radii  that  have  been  selected  for  this  data 
display  are  uniformly  spaced,  and  although  the  inboard  observation  is  placed  at 
the  beginning  of  the  aerodynamic  surface  of  the  blade,  the  outboard  observation 
radius will  be  seen  to  have  a  unique  definition  in  a  subsequent  section  of  this 
report. 

It has  previously  been  ascertained  that  "reducing  blade  segments  does  not  appear 
to  influence  the  solution  to  any  great  extent  (Houck  and  Bowles,  1976).  Thus,  one 
might  question  the  necessity  for  such  a  fine  mesh  of  points in this  analysis.  In 
order  to  answer  this  question,  let  us  consider  the  following: 

In  this  study,  under  all  conditions,  only  a  very  small  azimuth  advance  angle  of 
9" is  used,  thereby  effectively  eliminating  this  degree  of  freedom  as  an  error 
source. It has  indeed  been  our  experience  that  "the  worst  single  effect is that  of 
increasing  integration  [azimuth]  interval"  (Houck  and  Bowles,  1976). It is  also  a 
very  complex  problem,  which  is  under  investigation  but  not  addressed  here.  Only 
improvements  to  the  radial  dimension  are  addressed  here,  and  in  this  dimension,  which 
is  displayed  in  figures 5 and 6 ,  the  "frequency  content"  is  quite  low,  provided 
that  the  tip-loss  technique  of  section  IV  is  used  (discontinuities  are  avoided). 
Hence,  the  standard  technique  of  reducing  element  size  until  invariant  answers  ensue 
is  quite  proper,  and  figures 1 and 2 indicate  that  the  value  of 20 evaluation  points 
is  also  quite  proper. 

Balanced  and  Constrained  Dynamics 

The  two  conditions,  "balanced  dynamics"  and  "constrained  dynamics,"  are  con- 
venient  for  analysis. In the  balance  condition  the  flap/lag  moments  are  allowed  to 
operate  as  forcing  functions  for  the  flap/lag  differential  equations  (normal  opera- 
tions),  and  hence  produce new  flapping  and  lagging  states.  In  this  condition,  how- 
ever,  the  slight  modification of any  parameter  or  algorithm  generally  produces  myriad 
state  changes  and  masks  any  causal  relationship  under  investigation.  For  this  rea- 
son,  once  the  tracking-blade  phenomenon is observed,  the  applicable  Fourier  coeffi- 
cients  are  captured  for  use in the  constrained  condition.  Thus,  the  condition  of 
constrained  dynamics''  means  that  blade  trajectories  are  constrained  to  follow  those 
previously  determined  (by  the  20-segment  model) so that  force  and  moment  differences 
may be isolated  to  differences in algorithms  and  segmentation.  This  process  yields 
for  both  the  balanced  and  constrained  cases  identical  dynamics  at  the  specific 
azimuth  stations  selected  for  observation.  (The  standard  orientation of figure 3 is 
always  used  here.) In this  orientation,  where  the  master  blade is aft  and  others 

I 1  
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follow  sequentially  every ~ T / B  rad  in  the  direction  of  positive  rpm (B is  the 
number  of  blades),  flap/lag  states  are  the same,in both  the  balanced  and  constrained 
conditions. 

It is  interesting  to  note  that in the  constrained  condition  only  one  computa- 
tional  pass  through  the  rotor  equations  is  necessary  in  order  to  determine  control 
variation  responses.  Responses  to  collective (BCUFF) and  cyclic  controls (A~s, B ~ s )  
may  be  approximated  by  use  of  partial  derivatives with' respect  to  low-order  Fourier 
coefficients.  As  a  subject  for  future  research  the  static  feature  of  the 

for  rotorcraft  since  control-variation  responses  may  then  be  isolated  from  the  sensi- 
tive  balance  process.  When  such  a  two-pass  trimming  algorithm  is  performed  the  rela- 
tively  long  transients  induced  by  control  variations  (due  to  the  low  damping  in  blade 
responses)  are  constrained  until  approximately  correct  control  signals  for  trim  are 
determined;  the  blades  are  then  released  until  a  balance  is  obtained.  This  process 
is  then  repeated  until  the  constrained  results  become  quiescent.  It  is  believed  that 
this  sequence  is  more  efficient  than  the  alternate  process of determining  total 
responses  to  each  control  variation  since  long-period  rotor  transients  interfere  with 
cause  and  effect. 

11 constrained-dynamics"  condition  suggests  an  efficient,  general  trimming  algorithm 

IV. TIP LOSS 

The  tip-loss  technique  is  discussed  and  arguments  are  presented  for  its  modifi- 
cation  based  upon  consistency,  applicability,  accuracy,  and  ability  to  remain  rela- 
tively  invariant  with  changes in the  number  of  segments N. Tip  loss  is  presented 
early  in  this  discussion  because  it  results  in  a  complete  redefinition  of  integral 
limits,  which  influences  other  parameters.  The  resultant  concept  permits  the  imple- 
mentation  of  tip  loss  as  a  superimposed  quantity  that  may  then  be  ignored  throughout 
the  remainder  of  this  paper. 

Where r m  = 31 ft is  the  total  blade  length,  the  radius  to  the  cuff  from  the 
hub  (rA = 6.45  ft)  is  given  as  the  sum  of  the  hinge  offset  (e = 1.05  ft)  and  spar 
(e' = 5 . 4  ft): 

In  terms  of  dimensional 
all  N  segments  totals 

N - 

r A = e +  

segments Ar, 
the  effective 

N 

or  nondimensional  segments  AYny  the  sum  over 
blade  distance,  that  is, 

Arn - - rm 2 Ayn = rm(l - 5 - E ' )  = rm - rA 
n= 1 n= 1 

or 24.55 ft.  Houck  et  al.  state  that f o r  the  outboard  segment  the  lift  coefficient 
is  modified  for  tip  loss  by  use  of  the  relationship 

which  is  equivalent to-an Nth  segment  radial-distance  scale,  or  interpolation  in 
the  Nth  segment  via  the  proportion 
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where Bm = 0.97.  Therefore,  the  contribution  of  the  Nth  (outboard)  segment  to  the 
force  summation  process  for  all  terms  that  contain  the  quantity  CLY  (lift  terms)  is 
scaled,  and  from  the  associative  law  this  scaling is  shown  below  to  be  identical  to 
a  radial-distance  scale. 

Let  us  consider  the  discretized  lift-force-profile  definition  (Houck  et  al., 
1977)  with  its  radial  increment  multiplier  Arn, 

where fn is  a  tabled  function,  and  Sgn( ) is  plus  or  minus  unity. For the  purpose 
of  simplification,  we  may  define 

so that  equations  (15)  and (16) may  be  written 

AFpn = gn Arn + hn  Arn (1 5 n < N) 

and,  including  the  scale  factor  P  in  the  applicable  term, 

The  blade  lift  force  is  obtained  by  the  summation  over  all  segments, 

which  is  the  discrete  form  of  the  continuous  integration  process 

Hence,  CLy  scaling  is  equivalent  to  scaling  the  upper  radial  limit  for  terms  involv- 
ing  CLY in the force-profile-integration process.  Even  if  a  more  complex  tip-loss 
formulation  is  assumed,  such as linearly  decreasing  CLy  in  some  radial  interval 
within  the  Nth  segment,  the  discrete  force  summation  (with Bm adjustment)  is 
identical.  One  cannot,  therefore,  ascertain  the  motivation  for  CLY  scaling  from 
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the  provided  information  (eq. (13)), but  the  effect  is  clearly  the  abrupt  vanishing 
of  CLy-related  terms  at  Bmrm  as  in  equation (21). The  availability  of  the  con- 
tinuum  formulation  (eq.  (21))  is  important  when a  large  number of segments  are  con- 
sidered,  as  will  be  seen.  The  upper  radial  limit B m r m  will  be  exploited  in  this 
section,  but  it  is  important  to  keep  in  mind  that  both  CLYN  scaling  and  ArN seal- 
ing  are  identical  techniques  for  the  force  summation  problem,  with  the  exceptions. 
that  are  developed  below. 

When  the  number  of  segments N is  allowed  to  become  large,  inconsistencies  in 
the  mathematical  algorithms  become  apparent.  One  such  inconsistency  in  the  extant 
model  involves  the  summation  of  moments,  where  the  moment  arm  to  the  proportioned 
segment  is  not  adjusted. It is  not  aerodynamically  sound  to  consider CLY as  abso- 
lutely  constant  in  the  outboard  segment  all  the  way to the  tip rm,  even  if  it  has 
been  conceived  as  properly  scaled  (although  its  actual  characteristic  is  an  open 
question), so such  an  adjustment to the  moment  arm  is  always  necessary.  Thus,  no 
physical  assumption  exists  where  the  moment-summation  element  in  the  Nth  segment 
reduces to the  product fN ArNrN  of  the  extant  model. 

In  this  paper  the  discontinuous  cutoff of lifting  potential  at B m r m  is  gen- 
eralized  and  assumed to be  the  motivation  for  the  formulation (13). This  assumption 
permits  the  development  of a  moment-summation  algorithm  that  is  consistent  with  the 
force-summation  algorithm  without  added  cpmputational  expense.  Also,  this  assumption 
will  lead  to a more  general  treatment  of  the  force  profiles  themselves,  which  will 
become  quite  important  when  the  asymmetrical  distribution  properties  of  the  equal- 
annuli  spacing  algorithm  are  considered.  Unless  the  lift  coefficient  is  constant  in 
the  outboard  segment,  the  proportion  operation (14) takes  liberties  with  the  mean- 
value  theorem  for  integrals,  and  it  actually  contributes  to  force  as  well  as  moment 
errors. 

Let  us  consider  the  spacing  algorithm  for  the  extant  model  developed  in  sec- 
tion  VII.  Using  the  outboard-segment  increment  ArN, 

ArN = rm - v- 1 (r& - ri) + ri 

the  proportion  (14)  goes  negative  when N > 16.  This  operation  is  equivalent  to  sub- 
tracting  more  than  the  entire  force  contribution o f  the  outboard  segment,  and  in 
moment  space  such  a  subtraction  cannot  be  justified  even  if  the  force  increments  are 
constants.  Indeed,  figure 5 demonstrates  that  there  is  considerable  variation  in 
the  lift-force  profiles  in  this  region,  and  comparison  with  figure 6 shows  that 
typical  lift  values  ade  an  order  of  magnitude  larger  than  drag  values.  Since  this 
unusual  subtraction  feature  occurs  just  when  the  quantity  N is getting  large 
enough  in  an  accuracy  analysis  to  replicate  continuum  results,  a  large  number  of 
segments N and  this  technique  for  tip-loss  compensation  are  inconsistent.  Hence, 
at  least  for  the  establishment  of a  basis,  this  technique  begs  modification. It 
should  be  noticed  that  the  outboard-segment  size  ArN  in  equation (22) is  approx- 
imately  hyperbolic  with  N  (Taylor  series), 

so that P in  equation (14) is  nearly  linear  with N. 

P 1 - 0.0627N 
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For  comparison  purposes,  we  shall  consider  uniform  spacing  where  the  increment 
size  is  independent  of n. In  this  case, 

so that  the  proportion (14) does  not  go  negative  until  N > 26.  However,  it  still 
goes  negative  with N, and  this  fact  raises  questions  about  a  discrete  formulation 
of  continuous  phenomena  that  deteriorates  as  the  number of elements  becomes  heuristi- 
cally  sufficient  to  replicate  the  continuum. It should be noted  that  when  N > 26, 
or  with  the  equal-annuli  algorithm  when  N > 16, the (N - l)st segment  and  possibly 
other  segments  should  actually  enter  into  the  computation,  and  the  Nth  segment 
should  be  virtually  ignored. 

The  blade  terminus  for  lifting  purposes  may  be  computed  from  the  summation  of 
the  cuff, N.- 1 elements,  and  the  scaled  outboard  element: 

N- 1 

This  formulation  is  independent of the  spacing  algorithm.  The  radius  rT  consti- 
tutes  the  terminus of integration  for  terms  involving  the  lift  coefficient CLY, and 
the  suggested  tip-loss  technique  follows: 

Lift = 

- - 

Drag = 

- - 

With  the  suggested  formulation  the  interval  of  numerical  integration  becomes  indepen- 
dent  of  the  size  of  the  Nth  segment,  which  begins  at rN(-)  and  ends  at  rN(+), so 
that  previous  objections  are  invalidated. 

The  concept  *of  a  pseudoblade  is  such  that  it  encompasses  just  the  constant- 
lifting-surface  interval  (rA, rT). This  concept  will  be  seen  to  benefit  not  only 
this  analysis  and  the  establishment  of  a  basis,  but will  also  benefit  the  extant 
simulation  model.  The  technique  uses  linear  extrapolation  on  the  drag  coefficient 
beyond rT rather  than  interpolation  (assuming  a  constant  segment  value)  on  the  lift 
coefficient,  and  the  number  N  may  be  as  large  or  small as  is  desired  without  math- 
ematical  inconsistency. 
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Advantages  are  gained with  the suggested  technique.  Figure 5 shows  that  lift- 
force  gradients  are  generally  large  near  the  tip,  and  the  suggested  technique  does 
not  approximate in this  region. The linear  extrapolation of drag over  the  small 
interval  (rT, ~MR) will be  shown 'to be equivalent  to  superimposing  a  perturbation; 
the  magnitude  of  the  lift  profile in the  r.egion of  the  outboard  segment  is  gen- 
erally  an  order  of  magnitude  larger  than  that  of  the  drag  profile.  Hence,  lift  space 
is  inferior  to  drag  space  as an approximation  medium. A final  argument  for  the 
rejection  of  the  extant  technique  concerns  the  distortion o f  continuity,  which  is 
reserved  until  the  end  of  this  section. 

In order  to  appreciate  the  tip-loss  phenomenon in the  context  of  a  pseudoblade, 
we  shall  consider  the  aerodynamic-force  differentials in terms  of  the-  dimensional 
velocities  in  the  nth  segment  (Houck  et  al.,  1977), 

which  must  be  integrated  over  appropriate  radial  limits  to  obtain  the  blade  aerody- 
namic  forces  and  moments.  For  terms  involving  CLY  these  limits  are  the  pseudoblade 
interval  (rA,  rT),  whereas  for  terms  involving  CDY  these  limits  are  the  total  effec- 
tive  blade  interval  (rA, rMR),  which is  identical  to  the  combination  (rA,  rT)  and 
(rT, rm). This  latter  interval,  defined  as  the  drag  extrapolation  distance,  is 
given  by 

rMR - rT = (1 - Bm)rm = 0.93  ft 

which  is  less  than 4% of  the  total  effective  blade.  This  region  is  always  beyond  the 
outboard  evaluation  point  even  if N approaches  infinity.  During  this  small  inter- 
val  (rT, rm), the  lift  coefficient  CLY  is  zero  and  the  drag  coefficient  CDY 
along  with  its  appropriate  kinematic  functionality  may  be  extrapolated in both  force 
and  moment  space.  This  procedure  is  outlined  below in terms  of  superimposed 
increments: 

I" rT 

srm 'T 

d l  dr 

= - 1 p c Jrm vYvRcDy  dr J "R(TL) 2 
rT 

Also, the  moment  differentials  about  the  hinge  are  defined  (Houck  et  al.,  1977)  as 
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d%A = (r - e)dFp 

dMLA = (r - e)dFT 

so that  the  extrapolated  moment  increments  are  given  by 

vyvp (r - e)  CDy  dr 

vYvT (r - e)CDy  dr 

By assuming  linearity  between  the  available combinations of terms VYnVPnCDYn, 
vYnvTnCDYn,  and  vYnvRnCDYn  at  the  two  outboard  evaluation  radii  rN-1  and rN, we 
can defme four  constant  coefficients: 

so that  by  using  the  coefficients 

(33) 
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The t o t a l  aerodynamic  forces  and moments are thus  generated by in t eg ra l s   o f  
equat ions (29) over   t he   cons t an t   i n t e rva l  ( r A ,  r T )  p lus   the   super imposed   t ip - loss  
compensation terms, t h a t  is ,  

Fp = IrT dFp i- AFp (TL) 
'A 

M~~ = IrT ( r  - e)dFp + AMFA(TL> 

rA 

M~~ = IrT ( r  - e)dFT + AMLA(TL> 
'A 

It should  be  noticed  that   these  "superimposed  t ip-loss terms" are n o t   r e l a t e d  
to   the   usua l   def in i t ion   for   t ip - loss   e f fec ts ,   and   the i r   magni tudes  are considerably 
less t h a n   u s u a l   v a l u e s   b e c a u s e   t h e y   u t i l i z e   d r a g   r a t h e r   t h a n   l i f t   s p a c e  as an  approx- 
imat ion medium. Al so ,   t he   l i nea r -ex t r apo la t ion   p rocess   t o   ob ta in   t hese  terms does 
not   inf luence  the  computat ional   workload.  

I n   t h e  form of equat ions  (37)   any  cont inui ty   in   the  force  prof i les   of   equa-  
t ions   (1)  may be   explo i ted  by both  the  spacing  and summation algori thms.   Since 
t h e s e   f o r c e   p r o f i l e s  are exac t ly   t he   con ten t  of f i g u r e s  5 and 6 ,   r e f e r e n c e   t o   t h e s e  
curves shows tha t   t he   phys i c s   o f  a r o t o r   b l a d e   c o n t r i b u t e  enough d iscre te   model ing  
problems  wi thout   the   a rb i t ra ry   in t roduct ion   of   the   t ip - loss   d i scont inui ty   in to  
the   ou tboard   eva lua t ion   va lue .  When equation  (13) i s  app l i ed   t o   t hese   cu rves  as 
i n  t h e   e x t a n t  model, the  outboard  evaluat ion  value on both the Zift and drag pro- 
fiZes usua l ly  i s  d i s t o r t e d   t o  a p o s i t i o n   t h a t   b e a r s  no r ecogn izab le   r e l a t ionsh ip   t o  
t h e   o t h e r   p o i n t s ,   e a s i l y   b e i n g  less than   ha l f   the   magni tude   o f  i t s  adjacent  (N - 1) 
value ,   thereby   c rea t ing  a computer-science  problem  where  none  should  exist.  This 
discont inuous phenomenon is  obse rved   i n  a l l  f l igh t   reg imes   and   wi th   var ious   va lues  
of N. When N = 5, f o r  in s t ance ,  A r N  = 3.12 f t  with  equal-annul i   spacing  and  the 
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Nth  segment  lift  evaluation  is  distorted  to  approximately 70% of  its  "true"  or  con- 
tinuous  value.  Drag  distortion  depends  upon  the  relative  contribution  of  the  terms 
comprising  FT. 

In  the  general  form of equations ( 3 7 )  the  tip-loss  phenomenon  is  superimposed 
after  the  exacting  tasks  of  the  spacing  and  summation  algorithms  have  been  accom- 
plished.  The  suppression  of  distortion  in  the  continuous-derivative  information  is 
extremely  important  when  the  integration  of  equations ( 3 7 )  is  approximated  by  a  sum- 
mation  process.  Distortion  of  derivatives  should  be  avoided  when  using  discrete 
integration  schemes;  if  any  correlation  is  assumed  between  points,  which  is  certainly 
an objective  of  discrete  modeling  of  continuous  phenomena  and  is  the  primary  basis 
for  more  sophisticated  integration  schemes,  this  distortion  becomes  computationally 
destructive. 

For  the  20-segments-per-blade  case  the  summed  aerodynamic  lift,  drag,  and  radial 
forces  on  each  blade (excluding  the superimposed t ip- loss  terms  developed  here) are 
presented in figures  .9(a)  through  9(c),  and  the  flapping  and  lagging  moments  are 
given in figures 9(d)  and  9(e). These  forces,  shown  for  every 10 knots of vehicle 
velocity,:represent an accurate  summation  process  operating  on  the  specific  content 
of  figures 5 and 6 .  

When the   t ip - loss   e f fec t s   me  superimposed, the  curve  shapes  of  figures 9(a) 
through 9(e) are  modified  to  become  those  of  figures  10(a)  through 10(e). It is 
seen  that  lift-related  terms  vary  negligibly  when  this  tip-loss  technique  is  used 
because  of  the  unique  summation  limits.  Drag  variations  are  small  because  the 
extrapolation  distance  (eq. (30)) is  small. 

The  quantities  involving  the  multiplier  vp  (perpendicular  velocity)  are  negli- 
gible,  as  can  be  seen  by  comparing  the  curves  of  figures 9(a)  and  9(d) with  those of 
figures 10(a)  and  10(d),  respectively. However,  the  quantities  involving  the  multi- 
plier VT (tangential  velocity)  can  become significant,\as  can  be  seen  for  the 
advancing  blades  by  comparing  the  drag  curves  of  figures 9(b)  and  10(b). These 
results  have  been  numerically  investigated  and  the  quantities AF,(TL>  and  AMFA(TL) 
may  be  arbitrarily  set  equal  to  zero. 

Since  drag as a  numerical  quantity  is  usually  smaller  than  lift  and  the  extrap- 
olation  distance  is  a  small  and  constant  portion ( 0 . 0 3 )  of  the  total  radius,  CLY  is 
integrated  to  a  good  approximation  in  this  formulation  from  the  cuff  to  the  aerody- 
namic  terminus  for  lifting  purposes  (rT)  with  a  significant  gain  in  accuracy  (as 
compared  with  the  extant  technique),  and  CDy  is  integrated  to  the  blade tip (rm) 
with  a  slight  degradation  of  accuracy. 

Equations ( 3 4 )  through ( 3 7 )  constitute  the  superimposed  tip-loss  correction 
terms  that  are  assumed  throughout  the  remainder  of  this  paper. 

V . SIMPLIFIED  SPACING  AND  SUMMATION 

Three  spacing/summation  algorithms  are  here  examined in order  to  reveal  their 
relative-error  convergence  properties  and  to  investigate  their  efficiency  in  the 
rotorcraft  environment. A simplified  model  for  force  profiles  is  used  to  demonstrate 
that  the  moment-summation  algorithm of the  extant  model,  for  example,  has  slow  con- 
vergence  properties.  This  algorithm  is  later  expanded  to  the  full  model  and  account- 
able  error  sources  are  identified  in  both  forces  and  moments. 
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In  the  extant  model  the  increment  distribution  is  asymmetrical  about  the  indi- 
vidual  radial  evaluation  points  because  of  equal-annuli  spacing,  and  the  summation 
processes  are  given  by  the  quadrature  technique 

N 

"_ n= 1 

where  yn  is  designated  as  the  center  of  lift-  of  the  segment.  Although  the  limits 
are  proper  in  these  expressions  as N approaches  infinity,  it  will  be  shown  that 
they  are  first  approximations  with  relatively  poor  convergence  rates  when  asymmetri- 
cal  spacing  is  used. 

In order  to  demonstrate  convergence  features  of  summation  processes, a simpli- 
fied  blade-force  profile  is  used;  it  is  developed  as  follows: 

Let us  consider  a  constant,  unitary  force  where  y  is  the  nondimensional  radial 
variable,  and  neglect  spar  and  offset,  which  complicate  (and  modify  somewhat)  this 
analysis.  Under  these  conditions  the  force-summation  problem  is  to  find  an  efficient, 
discrete  algorithm  that  closely  approximates  the  closed-form  solutions  for  the  force 
and  moment: 

1 y d y = -  2 

If this  simplified  model  is  generalized  to  a  force  of  order k in  the  indepen- 
dent  variable,  the  continuous  solutions  are  given  by 

@ l  

yk  dy = - 1 
k + l  

0 

M(yk) . =  1' yk+l  dy = - 1 
k + 2  

and  the  direct  summations ( 3 8 )  operating on this  simplified  force  profile  produce 
relative  force  and  moment  errors  given  by 
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Since  E[F(yk) ] = EIM(yk-l) ] , the  force  errors  are  subsets of the  moment  errors  in 
this  simplified  model  (using  the  summation  process  given),  and  they  need  not  be 
included in this  discussion.  For  this  reason  the "reZative moment error due to a 
force pro f i l e  of order k" will  be  used  to  demonstrate  the  slow-convergence  feature 
of the  extant  moment  summation  algorithm  for  equal-annuli  spacing. First,  however, 
a  very  simple  spacing  scheme  is  examined  for  comparison  purposes. 

Uniform-Segment  Algorithm 

We  shall  consider  the  summation  of  moments  for  uniform  spacing  of  segments, 
where  the  force-profile  evaluations  are  made  at  the  midpoints  of  the  segments.  The 
simplified,  nondimensional  radial  parameters  are  given  by 

This  algorithm  will  be  useful  in  isolating  the  error  source  in  the  extant  model. 
The  evaluation  radii  for  various  numbers of segments  are  presented in table 2. 
(Coincidence  of  the  observation  radii  for all lift  and  drag  forces  and  moments  is  an 
assumed  feature  of a real  time  model.) 

For  this  algorithm,  as  the  number  of  evaluation  points  is  decreased,  the  end- 
point  evaluation  radius  moves  away  from  the  tip  and  the  density of evaluations  near 
the  tip  drops  off in equal  proportion  to  the  density  elsewhere. 

For  regular  polynomial €oms, let us consider  the  relative  moment  error  from 
equations (39 )  : 

For  a  force  characteristic  that  is  either  constant,  linear,  or  quadratic,  these 
sums are 

E[M(y2)Iun = -1/2N2 

and  they  are  presented in table 3 for  up  to 10 evaluation  radii. 



For  polynomial  forms  this  table  shows  the  general  underprediction  of  moments 
when  the  uniform-segment  algorithm  is  used. A pr ior i  information  is  necessary  to 
use  the  simplied  correction  factors.  Factors  such  as  these,  which  imply  an  assump- 
t5on  about  the  behavior  of  the  force  profiles  between  observation  radii yn,  are 
later  described in terms of  modifying  the  summation  algorithm (38). When  observation 
spacing  is  nonuniform,  the  effect  under  summation  of  products  such  as f(yn)Ayn is 
equivalent  to  a  weighting  algorithm  capable  of  accommodating  an  assumed  curve  profile. 
When  physical  information  is  available  that  indicates  a  tendency  under  certain  condi- 
tions  for  some  curves  (such  as an advancing-blade  drag  profile)  to  assume  a  particu- 
lar  polynomial  form,  this  motivates  the  selection  of  a  nonuniform-spacing  algorithm, 
but  does  not  release  the  spacing/summation  algorithm  from  the  responsibility  for 
accommodation  of  either  simple  or  arbitrary  curve  shapes,  which  may in fact  be  the 
dominant  characteristics. 

Equal-Annuli  Algorithm 

In contrast  to  the  uniform-segment  algorithm,  the  simplified  nondimensional 
radial  parameters  for  the  equal-annuli  algorithm  (Houck  et  al.,  1977),  which  are 
developed  in  section VII, are  given  by 

The  asymmetrical  property  of  these  relationships  is  due  to  the  fact  that yn, the 
evaluation  radius, is not  the  midpoint  of  Ayn,  which  is  variable.  For  various 
numbers  of  segments  the  evaluation  radii  are  presented in table 4, which  may  be  com- 
pared  with  table  2. 

Unlike  the  uniform-segment  algorithm  of  the  last  section,  this  spacing  algo- 
rithm  shifts  the  observation  radii  toward  the  blade  tip.  However,  it  is  also  true 
that  the  endpoint  retreats  from  the tip with  a  decreasing  number  of  segments,  which 
is  pertinent  to  the  tip-loss  discussion  of  section IV. 

For  regular-polynomial  forms  using  the  equal-annuli  algorithm  and  the  direct 
summation (38),  the  relative  moment  error  for  a  force  profile  of  order k is: 

By  using  the  Euler-McLaurin  Sum-Formula  (Selby,  1970),  that is, the  series  expansion 
N- 1 1 1  

= fi ($ N - 7 + 2 4 ~  - lgioN3 + 9216N5 163iiON7 + . . .) - 0.207886225 . . . 1 - 
n= 1 

the  relative  moment  error  for  a  linear-force  profile  may  be  evaluated, 
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= 0.623658675 ... +-- + ... 1 1 1 - -  
8N2 640N3  3072N5 (45 1 

By  performing an absolute  ratio  of  the  relative  moment  errors  the  performance 
of  this  algorithm  relative  to  the  uniform-segment  algorithm  with k = 1 is  then 
found 

which  reveals  that,  for  a linear force  and  five  segments,  the  relative  convergence 
rate  of  the  moment sum using  the  equal-annuli  algorithm  is  over  five  times  slower 
than  the  moment sum using'the uniform-segment  algorithm.  For  comparison  with  the 
uniform-segment  algorithm  of  table 3, the  relative  moment  errors  are  presented  in 
table  5  for  the  equal-annuli  algorithm.  Moment  errors  produced  by  using  the  equal- 
annuli  algorithm  thus  compare  poorly  with  those  produced  by  using  the  uniform-segment 
algorithm  of  table  3  when  the  force  profile  is  relatively  simple.  The  large  error 
present  when  the  force  profile  is  very  simple  (e.g.,  constant)  is  disturbing  because 
it  indicates  that  the  extant  simulation  model  produces  avoidable  errors  at  low 
vehicle  velocity.  This  problem  is  isolated  in  section V I 1  to an  inconsistency 
between  the  selection  of  the  interval  Ayn  and  its  observation  radius  yn,  and  this 
problem  is  compounded  when  the  moment  arm  yn  is  used  for  moment  calculations,  as 
above. 

Equal-Annuli  Midpoints 

If equal-annuli  segment  spacing  is  specified  from  other  considerations,  the  mid- 
point  of  the  interval  may  optionally  be  selected  as  the  observation  radius,  that is, 

which  preserves  the  spacing  features  of  pure  equal-annuli  spacing  as  shown  in  table 6 ,  
although  it  gives  slightly  more  weight to inboard  segments. 

For  regular  polynomial  forms  using  this  spacing  algorithm  and  the  direct  summa- 
tion  algorithm (38),  the  relative  moment  error  for  a  force  profile  of  order k is 
given  from  equations (39), 

k + 2  N 

EIM(yk)lEM  k+iN(k+2)/2 n=l 
- - ( & +  J n ) k  - 1 

2 

Compared  with  the  pure  equal-annuli  algorithm  shown in table'5, this  algorithm  tends 
to  eliminate  the  large  moment  errors  that  are  observed  for  simple  force  profiles,  as 
shown in table 7. The  constant  column  is  noteworthy.  This  table  indicates,  however, 
that  when  the  force  profile  becomes quadratic-or higher  order,  the  gain in accuracy 
is  lost.  This  loss  of  accuracy  will  be  shown in section VI to  be  a  consequence  of 
the  summation  algorithm  rather  than  the  spacing  algorithm. 
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The  use  of  the  simplified  spacing  and  summation  models  for  illustrative  purposes 
has  been  examined,  and  the  following  observations  may  be  made  about  the  summation 
'scheme (38) ,  or  quadrature  technique: 

1. It  works  well  for  uniform  spacing  and  produces  errors  compatible  with  the 
difference  between  linearity  and  the  actual  order  of  the  force  profile;  that is, 
table 3 is  quite  elementary. 

2. It does  not  work  well  at  all  for  equal-annuli  spacing,  although  some  improve- 
ment  is  noticed  if  the  force  profile  is  high  order. 

3. It works  better  for  equal-annuli  midpoint  spacing  but  seems  to  deteriorate 
too  rapidly  as  the  curve  order  increases. 

Momentum  or  statistical-sampling  theories  indicate  that  equal-annuli  spacing 
should  deliver  equivalent  or  less  error  than  uniform  spacing,  even  if  the  actual 
force  profiles  are  simple  polynomial  forms,  and  these  approaches  should all  deliver 
zero  error  when  the  force  profile  is  constant.  The  discrepancy in the  extant  model 
is  explored in section VI. 

VI.  SUMMATION PROCESSES 

The  summation  processes  of  Houck  et  al.  (1977),  where r?(+) and  rn(-) are  the 
upper  and  lower  nth  segment  boundaries,  are  equivalent in dlmensional  space  to 

and  have  been  shown  (sec.  V)  to be consistent  with  midpoint  spacing  of  the  evaluation 
radii,  that is, 

for  elementary  forms  of  the  force  profile f(r). However,  they  are  inconsistent  with 
an  asymmetrical-spacing  algorithm  such  as  equal  annuli, in which  the  evaluation  radii 
will  be  shown  to  reduce  to 

in  that  they  cause  errors  in  both  the  force  and  moment  summations  when  the  force 
profiles  are  elementary  (e.g.,  linear).  This  point  is  important  since  the  very 
nature  of  equal-annuli  spacing  permits  the  acquisition  of  a  limited  amount of data 
over  significant  intervals,  that is, reduces  -the  individual  segment  contributions  to 
what  appears  to be.elementary forms  under  summation. 
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When  the  force  profile  is  composed  of N perfectly  distributed  (segment 
boundaries  coincident  with  discontinuities)  constant  steps  over  each  (rn(->, rn(+)>, 
the  summation  processes  may  be  examined  at  the  elemental  level.  For  the  force- 
summation  process,  the  force f(rn)  could  be  evaluated  anywhere in the  interval 
(rn(-) I rn 5 rn(+)) because it is constant: 

However,  the  moment-summation  process  (50)  then  requires  rn  to  be  the  midpoint of 
the  interval, 

because  each  element  of  equation  (54)  is  equal  to  each  element  of  equation  (50)  if 
and  only  if  equation  (51)  holds.  This  fact  explains  the  large  errors  observed in 
column  one  of  table  5. 

When  the  force  profile  is  composed  of N perfectly  distributed  (coincident 
boundaries  and  piecewise  discontinuities)  linear  elements,  the  summation  process  may 
again  be  examined  at  the  elemental  level.  In  this  case  the  force  summation  process 
itself  defines  rn  as  the  midpoint.  By  fitting  a  linear  curve  between  the  segment 
extremities, 

it  is  shown  that  for  the  force  to  be  linear  its  midpoint  value  must  be  the  average in 
the  interval, 

so that  equation  (51)  is  again  dictated.  Errors  begin  creeping  into  the  midpoint 
algorithm  beyond  this  point  of  complexity,  and  this  very  fact is the  motivation  for 
the  selection  of  a  spacing  algorithm  that  tends  to  concentrate  observations in 
regions  of  high  gradient  activity. 

The  inconsistency in the  equal-annuli  algorithm  of  the  extant  model  will  be 
shown  to  be  due  to  the  failure  of  the  summation  processes  (49)  and  (50)  to  accommo- 
date  the  spacing  of  equation (52). It should  be  noted  that  equation  (51)  is  con- 
sistent  with  these  summation  processes  and  appears  to  be  a  viable  substitute.  For 
this  substitute  spacing  algorithm  the  segment  boundaries  themselves  will  be  shown in 
section  VI1  to  have an independent  derivation  based  upon  equal-annuli  arguments. 
However,  objections  still  exist  to  using  equations  (49)  and  (50)  even  if  the  mid- 
point  spacing  of  equation  (51)  is  used. For  instance,  since  the  initial  evaluation 
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radius  rl  is  quite  distant  from  the  cuff  rA  for  both  pure  equal-annuli  and  mid- 
point  spacing,  and  since  high  gradient  activity  near  the  tip i’s obvious,  then  equa- 
tions ( 4 9 )  and (50) produce  errors  even  for  piecewise  linear  curves  because  they  fail 
to  extrapolate  exterior to rN  (by  using  f(rN-1)) or interior to rl  (by  using 
f(r2)).  (The interior  slopes  have  a  canceling  action  when  piecewise  linear  curves 
are  used.)  In  addition,  again  assuming  this  linear  form,  the  moment  summation (50) 
produces  rather  large  errors  because  the  midpoint.radia1  arm  is  .a  gross  approximation 
to the  actual  integrated  .functionality;  that is, 

An integration  scheme  that  incorporates  both  the  extrapolation  feature  and  piecewise 
linear  functionality  is  developed  in  the  next  section. 

Integration  of  linear  segments 

In  this  section a consistent  summation  algorithm  is  developed.  The  force  pro- 
files  are  assumed to be  linear  between  observation  radii,  which  are  arbitrary, 

r - rn 
fn(r) = fn + (1 S n N) 

and  (if  necessary)  linearly  extrapolated  beyond  the  evaluation  extrema,  With  these 
assumptions,  the  integrations  for  the  forces  and  moments  over  the  entire  pseudoblade 
interval  (rA,  rT)  may be given  by 

M = lr2 rfl(r)dr + JrT rfN-l (r)dr + lrn+’ fn(r)dr - eF  (60) 
‘A  ‘N- 1 n=2 rn 

(excluding  the  superimposed  tip-loss  effects). The  discrete  solutions  are  given  by 
linear  combinations of the  force  observations fn, 

N 
F = anfn 

n= 1 

N 
M = bnfn 

n= 1 

when  the  precomputed  coefficients  are  as  follows  for N > 3: 
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and 

Hence,  by  merely  assuming  a  linear  transition  of  the  observed  force  profiles  from 
point  to  point,  a  consistent  set  of  coefficients  are  made  available  for  general  sum- 
mation  application  by  using  equations (61); they  accommodate  any  monotonic  spacing 
algorithm  rA 5 rk < rk+l 5 rT (1 I k < N), and  they  extrapolate  internal  to  the 
inboard  and  external  to  the  outboard  observation  radii. In  addition,  for  moment 
s.ummation  a  linear  force  profile  is  error  free. 

These  general  summation  coefficients  are  independent  of  the  spacing  algorithm, 
and  they  will  be  applied  to  the  basis in the  next  section.  Later,  they  will  also  be 
applied  to  the  "equal-annuli  midpoint  algorithm"  with  accuracy  improvement  over  the 
extant  model. 

When  N = 3,  the'summations in equation ( 5 9 )  vanish, so that : 
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Algorithm  for  the  Basis 

The  basis  always  utilizes 20 equally  spaced  observation  radii.  The  initial 
evaluation  radius  is  at  the  cuff  rl = rA, and  the  final  evaluation  radius  is  at  the 
tip  for  lifting  purposes rN = rT.  This  selection  obviates  extrapolation  except  for 
the  tip-loss  correction,  and  it  assures  that  the  best  available  parameters  are  used 
for  the  tip-loss  extrapolation  process.  The  basis  also  uses  the  piecewise  linear 
summation  process  of  the  previous  section.  The  summation  coefficients  reduce  to 

- Ar 

- Ar 

(n = 1) 

(1 < n < N) 

(n = N) 

where 

The  reduction of the  coefficients  to  these  simple  forms,  which  appear  similar  to 
those  of  the  extant  model,  is  due  to  the  selection  of  r1  to  correspond  to  the  cuff, 
rN  to  correspond to the  tip  for  lifting  purposes,  and  uniform  segments.  When  a 
nonuniform-spacing  algorithm  is  used  this  simple  form  does  not  occur. 

Because  of  the  occasional  high  rate  of  curvature  change  in  the  outboard  portion 
of  the  drag  profiles,  if  it  is  required  that  the  number  of  segments  be  minimal (-5), 
this  particular  subset of the  linear-integration  algorithm  is  not  recommended.  How- 
ever,  as  shown in figures 5 and 6, since  the  plotting  software  has  conveniently 
drawn  straight  lines  through  each of the  inclusive  observation  points,  it  is  easily 
seen  that  by  using  20  observations  (standard  for  the  basis)  this  linear-integration 
algorithm  produces  negligible  differences  from  the  continuum. 

Figure 10 has  been  created  by  using  this  20-segment  algorithm  and  including 
the  superimposed  tip-loss  terms  as  given in section IV. When  resolutions  of  the 
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aerodynamic  torces  and  moments  are  performed  and  inertial  terms  are  included,  the 
rotor  system  delivers  body-axes  forces  and  moments  as  given in figure 11. Fig- 
ures 10 and 11 thus  constitute  the  standard  for  comparison  that  may  be  used  to  estab- 
lish  the  efficiency  of  alternate  models. 

Integration  of  Quadratics 

It is  maintained  that  if  the  spacing  algorithm  accounts  for  curvature  in  the 
force  profiles  via  the  use of unequal  observation  "windows,"  then  the  summation 
algorithm  may  be  proportionally  simplified. In  particular,  for  the RSRA data  the 
linear-segment-integration  technique  discussed  previously  is  sufficient  provided  only 
that  the  observation  radii  are  appropriately  placed  within  each  window. In order  to 
demonstrate  this  fact  a  higher-order  integration  process  was  also  examined. 

A s  in the  linear-segment-integration  case,  a  set  of  coefficients  may  be  devel- 
oped  that  give  a  consistent  summation  process  when  the  behavior  between  points  is 
assumed to be  quadratic.  Of  course, at least  three  observations  are  required.  If 
the  observation  radii  are  assumed  to  be rn, rn+l,  and r+2, the  pertinent  integrals 
of  an  assumed  quadratic  function f(r) over  the  interval  (rx,  ry)  are  given  by  com- 
binations  of  the  observed  fn,  where k = 0 or k = 1: 

The  range  of  integration  or  applicability  of  equation (67)  must  be  decided,  and 
this  process  becomes  somewhat  complicated  when N is  general.  However,  for  n = 5, 
a  fairly  natural  selection  seems to be  to  pivot  two  quadratics  about  the  observation 
at r3.  In  this  case  the  range  of  (rx,  ry)  would  be  (rA,  r3)  for  the  first  quadratic 
and  (r3,  rT)  for  the  second. In this  case  the  summation  coefficients  for  use in 
equation  (61)  are: 
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In t e re s t ing ly   enough ,   t he   u se   o f   t hese   coe f f i c i en t s   p roduces   neg l ig ib l e  improve- 
ment o v e r   t h e   u s e   o f   t h e   l i n e a r   c o e f f i c i e n t s   g i v e n   i n   e q u a t i o n s   ( 6 2 )   a n d   ( 6 3 )  when 
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the  "equal-annuli 
observation  radii 
superfluous  when 
force  profiles. 

midpoints"  algorithm  (developed in sec.  VII)  is  used  to  select  the . Hence,  higher-order  summation  approximations  such  as  this  are 
the  spacing  algorithm  itself  accounts  for  the  curvature  of  the 

VI1 . EQUAL-ANNULI  DERIVATION 

Since  a  more  general  and  accurate  summation  process  has  been  developed, we now 
turn  our  attention  to  the  spacing  algorithm.  We  shall  consider  the  azimuth  advance 
angle  d$  that  occurs  during  some  time  interval  such  that  the  distance  that  a  point 
on  the  blade  at  the  observation  radius  rn  travels  is 

dSn = rn d$ 

and  the  area  swept  out  from  the  hub  to  this  point  is 

1 dAn = - r, dSn = - rn d$ 2 2 
1 2  

The  equal-annuli  concept  is  that  the  area  swept  out by.an adjacent  observation  radius 

is  used  to  define  the  differential  area 

which  is  independent  of  n.  Hence,  the  difference  in  the  squares  of  radii  is 
constant , 

K = rn+l - rn 2 2 

which  is  another  way  of  saying  that  the  density of observations  increases  hyperboli- 
cally  with  the  midpoints  between  observations,  that  is, 

By  induction,  equation  (71)  may  be  written  in  terms of the  initial  radius  rl. 

2 rn = (n - l)K + rl 2 (73) 

The  constant  K  is  determined  by  dividing  the  total  area  swept  out  by  the 
effective  blade  (rT  used  here  rather  than  rm)  into  N  equal  areas, 

(r; - ri) d$ = NK d$  (74) 

27 



so that 

The  initial  observation  radius  is  obtained  by  noting  that  the  area  from  rA  to  rl 
is  half  the  area  from  r1  to r2,  which  is  equivalent  to 

and  substituting  this  into  equation  (75)  with n = 2 yields 

so that  (when  is  substituted  for q) the  blade  observation  radii  are  given  by 
the  reference  result  (Houck  et  al.,  1977), 

which  by  induction  may  be  written  €or  all  n: 

rn = [ri 4- (r: - ri)(n - i)/N]1/2 (79) 

As  a  spacing  algorithm  this  one  appears  satisfactory  because it tends  to  appre- 
ciate  the  occasional  curvature  change  in  drag  forces  with  radius  or  at  least  recog- 
nize  the  linear  radial 
A summation  algorithm, 
with the  approximation 

factor  required  for  the  computation  of  aerodynamic  moments. 
however,  should  recognize  the  convergence  problem  associated 
processes, 

N \ 
I 

N 
M = IrT (r - e)f  (r)dr = f(rn)bn 

rA  n= 1 

and,  therefore,  the  coefficients  (an, bn) should  be  determined  from  assumptions  about 
the  behavior  of f(r) between  observation  radii  rather  than  be  averaged  over  seg- 
ments  that  are  artifacts  in  the  development  of  the  spacing  algorithm.  This  process 
is  discussed  in  the  next  section. 

Equal-Annuli  and  Quadratures 

In this  section  the segment spacing for  the  equal-annuli  algorithm  is  developed. 
It is  noted  that  the  selection of observation  radii  within  these  segments  involves 
other  considerations  when  the  quadrature  technique  is  used  in  the  derivation. 
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L e t  us   cons ider   the  segment bounded  by rn(+) on i ts  e x t e r i o r  and  rn(-)  on its 
i n t e r i o r .  The d i s t ances   t ha t   t hese   ex t r emi ty   pos i t i ons  travel during some azimuth 
advance  angle dJI are given by 

so  t h a t   t h e   t o t a l  area swept  out  by  the  segment is 

When t h e s e  segment areas are independent  of n we have 

2 
K = rn(+> - 

so  t h a t  by us ing   the   cont iguous   re la t ionships  

the   i nd ices  may be made compatible: 

The e x t r e m i t i e s  o f  t h e  segment are then  found by induct ion ,  

2 rn(+) = nK + L 

rn (-1 = (n - 1 ) ~  + L 

where t h e   c o n s t a n t s  are determined  from  the  boundaries 

r 

'N(+) = 'T 

and t h e   s o l u t i o n s  are given  by: 

The segment l eng th  may be  expressed by 

29 



but  it  has  not  been  relevant  to  this  development  'since  only  the  differences in the 
squares  of  radii  have  been  used.  Furthermore,  one  may  define  a  radius  such  as in 
the  extant  algorithm  (eq. (79)), but  it  has  not  been  relevant  to  this  development 
either. A possible  reason  for  its  inclusion in the  algorithm  for  the  extant  model 
is  as  follows:  If  the  assumption  is  made  that  the  force  between  points  is  quadratic 
in  radius,  specifically  at  the  extremities,  that  is, 

then  another  assumption is necessary, which i s  inconsistent  with  the f i r s t  asswnp- 
t ion:  that  the  average  of  the  functional  values  at  the  segment  extrema  is  equal  to 
the  observation  value,  that is, 

1 
fn = 7 [fn(+> + fn(-> 1 = 7 C[rn(+> + rn(-)l 1 2  2 (88) 

so that,  by  applying  the  original  assumption  to  the  evaluation  point  itself, 

2 fn = Crn (89) 

the  simultaneous  solution  of  equations (88) and (89) produces  the  formulation  of  the 
ext.ant  model,  which  is  equivalent  to  equation (79): 

But  if f(r) is  indeed  quadratic  as  in  equation ( 8 9 ) ,  then  the  correct  integration 
process  is  given by 

so that  the  correct  quadrature  method  of  integrating  the  forces  within  the  interval 
is 

fb-,)  [rn(+> - rn(->l = Crn[rn(+) - rn(-> 3 2 

1 2 
= 7 C[rn(+>  rn(-)lirn(+> + rn(+>rn(-) + rn(-> - 2 l  ( 9 2 )  

This  expression  results in  an observation-radius  definition in terms  of  the  segment 
extremities,  which  is  quite  different  from  the  reference  spacing: 
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Thus, t h i s   p a r t i c u l a r   s e g m e n t - o r i e n t e d   d e r i v a t i o n  of the   equal -annul i   a lgor i thm 
iso la tes   the   observed   mathemat ica l   incons is tency .  EquaZ-anmZi spac.ing of the  ob- 
servation radii CS not compatC5te with the quudrakuxe techniqwe. However, as given 
i n  equati.on (79 ) ,  equal   annul i   spac ing  may be  used  with  the summation c o e f f i c i e n t s  
of  Section V I .  Indeed, th is  combination is recommended f o r  real-time s imula t ion  
programs,  where a minimal number  of r a d i a l   o b s e r v a t i o n s  are requi red .  

Equal-Annuli  Midpoints 

The Combination  of the  quadrature   technfque  and  equal-annul i   spacing  tends  to  
improve resu l t s  when the f o r c e   p r o f i l e  is a high-order   polynomial   in   radius .  How- 
e v e r ,   t h i s   f e a t u r e  i's r a r e l y  of b e n e f i t Y 2   w h i l e  i t s  d e s t r u c t i v e   t e n d e n c i e s  are much 
more common. I n   o r d e r   t o   i l l u s t r a t e   t h i s   p r o c e s s ,   a n   a l t e r n a t e   s p a c i n g   a l g o r i t h m  
i s  introduced,  which is more compat ib le   wi th   the   quadra ture   t echnique   because  it 
uses   the   midpoin ts   o f   the   a r t i f ic ia l   segments ,   g iven   in   equa t ions  (87) : 

For a q u a d r a t i c   f o r c e   p r o f i l e ,   t h i s   s p a c i n g   a l g o r i t h m  is shown in   appendix  A t o  
d e l i v e r   h a l f  as much e r r o r  as equal-annul i   spacing,  when the   quadra ture   t echnique  
is  used. 

The spac ing   dgor i thm of equat ion ( 9 4 )  is a l s o  of i n t e r e s t  when the   sugges ted  
summation c o e f f i c i e n t s  (62) and (63) are used, 

N 

n= 1 
P = anf(rn> 

N (95) 

In  appendix B t h i s   p r o c e s s  is  compared t o   t h e   o r i g i n a l   c o m b i n a t i o n  of equal-annuli 
spacing  and  quadrature  technique. The u s e  of summation c o e f f i c i e n t s  i s  shown t o  
have a d i s t i ' nc t   advan tage   fo r   a rb i t r a ry   cu rve   shapes .  

In   combinat ion  with the t ip- loss   technique  of   equat ion ( 3 7 ) ,  t he   i ncons i s t en -  
cies i n   t h e   r a d i a l   c o m p u t a t i o n s  are e l i m i n a t e d   f o r   b o t h  real-time simul.ation  and 
f o r  c.ontinuum emulation,  provided the equal-annuli   spacing  algori . thm  of  equation 
(79) o r   t h e   a l t e r n a t e   s p a c i n g   a l g o r i t h m  of equation  (94) is used,   a long w-i.th t h e  
summation c c e f f i c i e n t s .  N o  real-time computat ional   penal ty  accrues. Of p a r t i c u l a r  
impor tance   to  real-time s imula t ion   (us ing  a minimal number o f   r ad ia l   obse rva t ions )  
are t h e   f e a t u r e s  of l i n e a r i t y  b e t w e e n   o b s e r v a t i o n   r a d i i ,   e x t r a p o l a t i o n   i n t e r n a l   t o  
the inboa rd   obse rva t ion   r ad ius   and   ex te rna l   t o   t he   ou tboa rd   obse rva t ion   r ad ius ,  
superimposed t i p  l o s s  t h a t   d o e s   n o t   i n f l u e n c e   t h e   c o n t i n u i t y  of t h e   f u n c t i o n a l s   t o  
be  summed, a c o n s i s t e n t   s o l u t i o n   f o r   f o r c e s   a n d  moments, and no e x t r a  real-time 
computational  expense. 

2 Only t h e   d r a g   p r o f i l e s   f o r   a d v a n c i n g   b l a d e s   d u r i n g   h i g h - s p e e d   f l i g h t   b e n e f i t  
(e .g . ,   b lade 2 i n   f i g .   6 ( e e ) ) .  
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VIII. ERROR COMPARISON 

The  errors  from  both  the  extant  and  alternate  algorithms  are  examined  here  by 
using  5-segment  models  and  comparing  them  with  the  20-segment  basis.  In  order  to 
fully  appreciate  this  comparison  the  "constrained  and  balanced"  operations  are 
necessary. 

In  exercising  the  extant  model,  only  the  angle-of-attack  correction of sec- 
tion  I11  was  implemented. 

In figure  12  the  total-body-axis  forces  and  moments  for  the  extant  model  are 
presented  in  the  constrained  condition.  Thus,  the  blade  trajectories  have  been  con- 
strained to the  same  trajectories  as  the  20-segment  basis  case.  The  forces  and 
moments  of  the  basis  of  figure 11 (the  basis  always  uses  20  segments)  are  also 
repeated  on  these  graphs  for  comparison  purposes.  The  differences  are  due  to  the 
decreased  number  of  segments,  slow  summation  convergence,  the  tip-loss  computation 
technique,  and  equal-annuli  spacing. 

Since  figure  12  has  been  created  in  the  constrained  condition so that  inertial 
terms  are  invariant,  differences  are  entirely  caused  by  the  computation  of  aerody- 
namic  terms.  These  aerodynamic  errors  are  presented  in  figure  13.  Among  items  that 
should  be  noticed  are  the  force  and  moment  standoff  differences  at  low  vehicle  veloc- 
ity,  the  deterioration  (see  blade  5 in fig. 13(b))  of reverse-flow  computation,  and 
error  variation  when  the  blade  encounters  drag  divergence  (see  blade  2  in  fig. 13(a)). 
From  the  data  set  this  latter  phenomenon  is  identified  by  variations  in  the  drag 
coefficient  due  to  Mach  number  variation  without  regard  to  angle-of-attack  variation. 

When  the  blade  states  are  allowed  to  interact  with  their  flap/lag  differential 
equations,  the  balanced  condition  is  achieved.  Figure 14 shows  the  extant  and  basis 
rotor-system  total-body-axes  forces  and  moments.  The  new  spatial  orientation of the 
rotor  disc  produces  differences,  some  of  which  involve  inertial  terms.  Although  the 
forces of figures 12(a)  and  14(a) do not  experience  much  variation,  an  interesting 
phenomenon  occurs  in  moment  space,  especially  in  yawing  moment;  it  is  seen  in  com- 
paring  the  value of Rm between  figures 12(b)  and 14(b). In  order to explain  this 
phenomenon  figure  15  is  presented,  which  gives  the  rotor-torque  differences.  This 
figure  shows  that  the  torque  difference  under  the  constrained  condition  is  minimal; 
however,  when  the  flapping-  and  lagging-moment  variations  of  figures 13(d)  and  13(e) 
are  allowed  to  interact  with  the  differential  equations,  new  blade  states  are  created 
that  minimally  influence  the  force  values  but  cause a  rather  large  variation  in  total 
rotor-system  torque.  This  effect  is  shown  in  the  following  section to be  attribu- 
table  to  one  specific  inertial  term. 

The  alternate  simulation  model  creates  errors  that  are  more  consistent  with  its 
assumptions,  and  usually  much  less  than  those  of  the  extant  model.  Individual-blade 
aerodynamic  force  and  moment  errors for this  five-segment  model  are  given  in  fig- 
ure 16 for comparison  with  figure  13.  The  total  system  outputs  in  the  constrained 

3At low  vehicle  velocity  the  unusually  large  displacement  of  the  initial  evalua- 
tion  radius  for  the  extant  algorithm  delivers  an  error  in  perpendicular  force of 
approximately 100 lb  per  blade.  Increasing  the  number of segments  from 5 to 10 only 
reduces  this  error  to  approximately 70 lb  per  blade.  The  extrapolation  feature of 
the  alternate  model  eliminates  this  error. 
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condition  are  given in figure  17  for  comparison  with  the  extant-model  outputs  shown 
in  figure  12.  The  total  system  outputs in the  balanced  condition  are  given  in  fig- 
ure 18 for  comparison with>the extant-model  outputs  shown in figure 14. A s  might 
be  expected,  the  total  torque  error  is  much  improved.  This  error,  given  in  figure 19 
for  both  the  balanced  and  constrained  conditions,  may be directly  compared with the 
error  for  the  extant  model  shown in figure  15;  a  further  examination  of  the  torque 
error  is  given in the  next  section. 

Figures 1 and  2  have  been  presented  to  demonstrate  thrust  variations  with  seg- 
ment  number.  Only  on  these  two  graphs  does  the  "basis"  contain  less  tban 20 ele- 
ments.  The  improvement  in  thrust  obtained  by  using  the  alternate  algorithm  rather 
than  the  extant  algorithm  is demonstrated.in these  figures  for  vehicle  velocities  of 
10 and  250  knots.  Specifically,  for  a  small  number  of  segments  the  alternate  algo- 
rithm  is  at  least  twice  as  accurate,  and  for  a  larger  number N the  convergence  is 
faster.  Invariancy  with N is  displayed  by  the  basis in the region.af N = 20. 
Another  feature  that  is  indicated  by  these  graphs  is  that  lift  forces  are  improved 
with  uniform  spacing  (basis).  Because  of  their  nearly  arbitrary  variations  this 
improvement  with  uniform  spacing  is  most  probably  true in general,  but  this  fact is 
not  true  for  drag  forces.  These  drag  forces  exhibit  distinct  polynomial  forms, 
especially  at  significant  velocities  for  advancing  blades,  and  uniform  spacing  fails 
to  accommodate  this  feature  when  the  number  of  segments  is  small.  Indeed,  high- 
order  polynomial  drag  characteristics  are  the  justification  for  equal-annuli  spacing, 
and  this  feature  has  been  preserved in the  development  of  the  alternate  algorithm. 
It should be noted  that  this  alternate  algorithm  is  also  consistent  with  lower-order 
curves,  which  are  dominant  in  figures 5 and 6 .  

Error  Propagation 

The  extant  model  is  here  used  to  trace  an  error  from  its  source in the  con- 
strained  condition  to  the  balanced  condition. It will  be  shown  that  the  major  dif- 
ferences  in  balanced  and  constrained  conditions  are  simply  due to an  inertial  term. 
(This  fact  supports  the  contention  that a major  contribution  to  rotorcraft  trimming 
will result  from  the  "constrained"  concept.) In the  previous  section  the  importance 
of  accurate  summation  along  the  blade  was  illustrated  by  a  variation in torque 
(fig.  15). Although  the  aerodynamic  force  outputs  during  the  balanced  condition  vary 
only  slightly  from  the  outputs  during  the  constrained  condition  (as  can  be  seen  by 
comparing  figs. 12(a)  and  14(a)), the  slight  reorientation  of  the  rotor  disc,  caused 
by  the  inaccurate  moment  summation  process,  produces  torque  errors.  These  errors  are 
due  primarily  to  the  contribution  of  a  single  inertial  term,  as  shown  below. 

The  total  rotor  system  yawing  moment N m  is  nearly  identical  to  the  torque Q. 
Slight  differences  are  attributable  to  the  moment  arm  and to the  shaft-to-body-axis 
transformation,  which  is  almost an identity  matrix.  Hence  for B blades, 

For  the  purpose  of  a  perturbation  analysis,  we  consider 
term, 

+ eFXIi) (96) 

a  portion  of  the  inertial 
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B B - ~ 

Nm 2 -e F~~~ + ... = -e  Mb  cos  ~i  sin bi(rS - n12 + ... 
i= 1 i= 1 

where  the  principal  lagging  Fourier  coefficient  is  defined  (in  deg)  as 

B 
a0L = - 57*3 6i B i= 1 

Thus,  if  the  torque  error  is  due  primarily  to  a  reorientation  of  the  lagging  angles, 
it  may  be  reconstructed  by  considering  only  the  contribution 

ANm = -eBMbn2  AaoL/57.  3 (99) 

where  rpm  follows  the  computed  schedule  of  table 1. 

The  lagging  coefficient  a0L  is  presented  in  figure 120 from  the  basis. Also 
appearing on this  graph  is  the  difference  in  lagging  coefficient  AaOL  observed  from 
the  extant  simulation  model  with  balanced  conditions  for  five  segments.  Using  equa- 
tion  (99),  with  the  parameters  e = 1.05,  Mb = 91, B = 5, and  rpm  as  in  table l, 
figure 21 is produced,  showing  very  little  deviation  from  the  torque-error  history 
of  figure 15. Hence,  inaccuracies in the  computation  of  the  lagging  moment  during 
the  constrained  condition  are  seen in the  balanced  condition  to  contribute  directly 
to  the  yawing-moment  error,  as  should  be  expected. 

From  this  comparison  an  important  fact  is  revealed:  In  order  to  obtain  accurate 
rotor  system  outputs  the  moment  summations  are  at  least  as  important  as  the  force 
summations.  The  amplification  due  to  the  radial  moment  arm  means  that  any  effort 
spent in replicating  the  true  force  profiles  is  effort  well  spent. 

The  lagging-moment  error,  which  directly  influences  the  lag  states  through  the 
forcing  functions  of  the  differential  equations  (Houck  et  al.,  1977),  influences 
a0L  via  equation (98), and  thus  contributes  to  the  torque  error  via  equation (99). 
It has  been  shown  here  that  this  logic  path  is  the  one  that  produces  the  torque  error 
for  the  extant  simulation,  which  manifests  itself in the  total-yawing-moment  errors 
given in figure 14(b) .  

IX.  CONCLUSIONS 

An angle-of-attack  correction  for  reverse-flow  computation  has  been  developed  by 
using  symmetry  arguments,  and  this  correction  has  been  demonstrated  to  influence 
simulation  results  at  vehicle  speeds in excess  of 155 knots. 

The  balanced/constrained  dynamics  concept  has  been  developed  for  rotor  systems 
and  shown  to  be  a  valuable  tool  for  comparing  different  formulations. It should  also 
lead  to  the  development  of  a  generalized  rotorcraft  trimming  process  that  promises  to 
be  computationally  efficient. 
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An a l t e r n a t e   t i p - l o s s  model   has   been  developed  that   s implif ies   the  integrat ion 
process  by us ing  a minor   per turba t ion   tha t  is superimposed  upon i n t e g r a l s  of  contin- 
uous   der iva t ives .  The pseudoblade  concept   has   been  demonstrated  to   exploi t   the  rela- 
t i ve   magn i tudes   o f   l i f t   and   d rag   fo rces   fo r   t he   app rox ima t ion   p rocess .  

The s low  convergence   p roper t ies   o f   the   rad ia l  summation  scheme us ing   quadra tures  
has   been   no ted ,   and   the   p ropagat ion   of   e r rors   has   been’   i l lus t ra ted .  The  summation 
scheme has  been  improved  with a set of c o e f f i c i e n t s   t h a t  are a p p l i c a b l e   t o   v a r i o u s  
spacing  a lgori thms;   they are demonstrated  herein by u s i n g   t h e   a l t e r n a t e   a l g o r i t h m  
that   features   equal-annul i   midpoints .   Equal-annul i   spacing i s  recommended f o r  real- 
time use   w i th   t hese  summation coe f f i c i en t s .   Ou tpu t  improvements are shown t o   b e  
especial ly   noteworthy  during low v e h i c l e   v e l o c i t y .  A genera l  improvement i n   t h e  
computat ion  of   l i f t - re la ted  quant i t ies   has   been  demonstrated,   a l though a t  h igher  
f l i g h t   v e l o c i t i e s  some de te r io ra t ion   has   been   obse rved   i n   d rag - re l a t ed   quan t i t i e s .  
S i n c e   l i f t   q u a n t i t i e s  are usua l ly   an   o rder   o f   magni tude   g rea te r   than   drag   quant i t ies ,  
the   to ta l - ro tor -sys tem  outputs  are improved. 

The advancing-blade  drag  prof i les  are shown t o   o c c a s i o n a l l y   e x h i b i t  a high-order 
rad ia l   po lynomia l   behavior   tha t  is b e s t  accommodated  by a biased  spacing  a lgori thm 
such as i n   t h e   e x t a n t  model,  but t h i s   a d v a n t a g e  is de le t e r ious   t o   t he   conve rgence  of 
o the r   quan t i t i e s ,   i nc lud ing   t he   r e t r ea t ing -b lade   d rag   p ro f i l e s .   Fu r the r   r e sea rch  is  
recommended i n   t h e  area of  summation c o e f f i c i e n t s   t h a t   r e c o g n i z e   b o t h   t h e   c h a r a c t e r -  
i s t i c  d i f f e r e n c e s   i n   l i f t  and  drag  and  the  azimutli-dependency  problem. 

A da t a   base  o f   h i g h   f i d e l i t y  has been  created by using 20 uniform  segments. 
This   da ta   base  has been   g raph ica l ly   i l l u s t r a t ed  and e x i s t s  as a b a s i s   f o r   a d d i t i o n a l  
model  development ac t iv i t ies .  T h i s   b a s i s   e x h i b i t s   n e i t h e r   s t a n d o f f   e r r o r s   n o r   e v a l -  
ua t ion   weight ing   usua l ly   assoc ia ted  wi’th real-time a l g o r i t h m s   t h a t   r e q u i r e  a minimal 
number of eva lua t ions ;  it is  v i ’ r t u a l l y   i n v a r i a n t   w i t h   t h e  number  of segments  used. 
For a l a r g e  number of   segments ,   the   a l te rna te   a lgor i thm  converges   to   the   bas i s .  
When t i p  loss  is reformulated as developed   here in ,   the   ex tan t   a lgor i thm  a l so  con- 
v e r g e s   t o   t h e   b a s i s ,   b u t  more  slowly. 
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and 
Aeromechanics  Laboratory 

AVRADCOM Research  and  Technology  Laboratories 
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APPENDIX A 

QUADRATIC  COMPARISON 

For  a  force  pro 
produces  half  the  er 
rithm  for  the  extant 

file  that  is  quadratic in  radius,  equal-annuli  midpoint  spacing 
ror  of  pure  equal-annuli  spacing,  even  when  the  summation  algo- 
model  is  used.  This  fact is proved  below. 

If  the  force  profile  is  assumed  to  be  quadratic  in  radius 

f(r) = r2 

then  the  closed-form  solution  is 

FC = SrT r2 dr = - 1 3  (rT - ri> 
3 

rA 

Defining 

bl = 1 (r$ - ri)\ 

the  segment  extremities  are  given  by  equations (87) as 

rn(+) = (nb 1 + b2) 
nn(-) = [ (n - 1)bl + b2]1/2 I 

and  the  force-summation  process  for  the  extant  model  is 

The  two  candidates  for  f(rn)  are  the  pure  equal-annuli  assumption, 

and  the  equal-annuli  midpoint  assumption, 

(A3 

(A4 

For  the  pure  equal-annuli  algorithm  the  force  error  is  given  by 
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1 
2 

N 
= - [(2n - 1)bl + 2b2][Anbl + b2 - A(n - l)bl + b21 - FC 

n= 1 

1 1 
2 

N- 1 
= - [(2N - 1)bl + 2b2]rT - 2 (bl + 2b2)r~ - bl  dnbl + b2 - FC 

n= 1 

and  for  the  equal-annuli  midpoint  algorithm  the  force  error  is 

Hence, 



APPENDIX B 

NUMERICAL EXAMPLE 

With  five  segments,  the  resultant  forces  are  here  compared  by  using  the  sug- 
gested,  alternate  algorithm  (equal-annuli  midpoints)  and  the  extant  algorithm  (pure 
equal-annuli  spacing).  The  applicable  summation  algorithms  are  different, as noted 
in  the  text. 

For  five  segments  the  segment  extremities  (the  same  for  both  algorithms)  are 
given  from  equations  (87)  as 

rl(-) = rA = 6.45 

'I(+) = r2(-) = 14.632942 

r2(+) = r3(-) = 19.663252 

rg (+) = 1-4 (-) = 23.646648 

r4(+) = r5(-) = 27.049666 

r5(+) = rT = 30.07 

From  equation (94),  for  equal-annuli  midpoint  spacing  the  observation  radii  are 

r1 = 10.541471 

r2 = 17.148097 

r3 = 21.148097 

r4 = 25.34815 

r5 = 28.559833 

which  enable  us  to  compute  the  force  coefficients  from  equations  (62): 

a1 = 8.6617041 

a2 = 4.2898194 

a3 = 4.10003 

a4 = 3.0973926 

a5 = 3.4710539 I 
Thus,  for  equal-annuli  midpoint  spacing  with  five  segments  the  force-summation  algo- 
rithm is given  by: 
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Fm = 8.661704lf(l0.541471) + 4.2898194f(17.148097) + 4.10003f(21.65495) 
+ 3.0973926f(25.348157) + 3.4710539f(28.559833)  (B4) 

For  the  pure  equal-annuli  algorithm,  as  in  the  extant  model,  the  observation 
radii  are  given  from  equation  (79)  as 

r 1 = 11.307641 

r2 = 17.331567 

r3 = 21.746349 

r4 = 25.4052 

r5 = 28.599732 t 
so that  in  accordance  with  equation  (49),  using  the  differences [r?(+) - rn(-)I,  the 
extant  model  with  five  segments  produces  the  force-summation  algorlthm: 

FEq = 8.182942f(11.307641) + 5.03031f(17.331567) + 3.983396f(21.746349) 
+ 3.4031858f  (25.4052) + 3.0203342.f  (28.599732) 

For  a  force  of  order k in  radius  the  correct  integration  process  is 

and,  therefore,  the  relative  force  errors  in  these  two  algorithms are  given by : 

These  relative  errors  are  plotted  in  figure  22,  and  they  demonstrate why the  alter- 
nate  algorithm  delivers  less  error  for  segment  curve  characteristics  up  to  at  least 
cubic  order (k = 3) in  radius. 
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TABLE 1.- COMPUTED  rpm  WITH  VEHICLE  VELOCITY 

Vehicle  velocity,  knots 

0-180 
190 
200 
2 10 
220 
2  30 
240 
250 
260 
2  70 
2 80 
290 
300 

rpm,  radlsec 

22.  I416 
21.9424 
21.3972 
20.8520 
20.3069 
19.7617 
19.2165 
18.6714 
18.1262 
17.5811 
17.0359 
16.4907 
15.9456 

TABLE  2.-  UNIFORM-SEGMENT  EVALUATION  RADII 

Evaluation  point,  n l- 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Evaluation  radii  for 
number of evaluation  points,  N 

3 

0.1667 
.5000 
.8333 

5 

0.1 
.3 
.5 
.7 
.9 

7 

0.0714 
,2143 
.35  71 
.5000 
.6429 
.7857 
.9286 

10 

0.05 
.15 
.25 
.35 
.45 
.55 
.65 
.75 
.85 
.95 

TABLE  3.-  UNIFORM-SEGMENT  ALGORITHM  RELATIVE  ERRORS 

Number  of  evaluation  points,  N 
Relative  error  in  blade  moment 
if  the  force  profile  is: 

Constant Linear 

0 -0.2500 
0 

-. 0025 0 
-. 0031 0 
-. 0039 0 
-. 0051 0 
-. 0069 0 
-. 0100 0 
-. 0156 0 
-. 0278 0 
-. 0625 

~ 

" ~ " 

Quadratic 

-0.5000 -. 1250 -. 0556 -. 0312 -. 0200 
- .0138 -. 0102 -. 0078 -. 0062 -. 0050 

1 
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TABLE 4.- EQUAL-ANNULI  EVALUATION  RADII 

I 
Evaluation  point,  n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

l"----- " 1 
Evaluation  radii  for 

number  of  evaluation  points,  N 

3 

0.4082 
.7071 
.9129 

5 

0.3162 
.54  77 
,7071 
,8367 
,9478 

"~ 

7 

0.2673 
,4629 
.5976 
.7071 
.8018 
.8864 
.9636 

"~ 

-~ 

0.2236 
,3873 
.5000 
.5916 
.6708 
.7416 
,8062 
,8660 
.9220 
.9747 _" 

TABLE  5.-  EQUAL-ANNULI.ALGORITHM  RELATIVE  ERRORS 

Number of evaluation  points,  N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

T Relative  error  in  blade  moment if  the  force  profile  is: 

Constant 

0.4142 
,2144 
.1446 
.lo91 
,0876 
,0732 
.0628 
,0550 
.0490 
.0441 

____ ~~ 

Linear 

0.5000 
.1893 
.lo61 
.0702 
.0508 
.0390 
,0311 
.0256 
.0216 
.0185 

~ ". 

Quadratic 

0.4142 
.1145 
.0537 
.0313 
.0206 
.0146 
.0109 
.0085 
.0068 
.0056 

" - " " 

. "_ - ~. 

TABLE  6.-  EQUAL-ANNULI  MIDPOINT  EVALUATION  RADII 

Evaluation  point,  n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3 - 
0.2887 
,6969 
.9082 

5 

0.2236 
.5398 
.7035 
,8345 
.9472 

Evaluation  radii for 
number  of  evaluation  points, 

0.1581 
.3817 
.4975 
,5901 
.6698 
.7409 
.8056 
.8655 
.9216 
.9743 

7 
" - 

0.1890 
.4562 
.5946 
.7053 
.8005 
,8855 
.9629 
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TABLE 7.- EQUAL-ANNULI MIDPOINT~ALGORITHM RELATIVE  ERRORS 
". - " " 1 

Relative  error in blade moment 
Number of evaluation  points, N if the force profile is: 

Linear Quadratic 

1 0 

-. 0531 3 0 
-. 1464 -. 0947 2 0 

-0.5000 -0.2500 

-. 0095 -. 0108 9 0 
-. 0119 -. 0128 8 0 
-. 0151 -. 0156 7 0 
-. 0201 -. 0195 6 0 
-. 0280 -. 0254 5 0 
-. 0420 -. 0351 4 0 
-. 0707 

10 0 -. 0092 -. 0079 
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V = 10 knots 

NUMBER OF EVALUATIONS, N 

Figure 1.- Thrus t   d i f f e rences ,  v = 10 knots .  
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Figure 2 . -  Thrus t   d i f f e rences ,  v = 250 knots. 
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Figure 7.- Aerodynamic coefficient logic. 
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